Vector Product

To Access the full content, Please Purchase

  • Q1

    Marks:1
    Answer:

    Explanation:
    View Answer
  • Q2

    Let A=2i^+k^, B = i^+j^+k^ and C = 4 i^-3j^+7k^.

    The vector R which satisfies the equations R×B=C×B and R.A= 0 is given by

    Marks:1
    Answer:

    -i^-8j+2k^

    Explanation:

    Let R= xi^+yj^+zk^. Then

    R×B=C×B R-C×B= 0

     i^j^k^x-4y+3z-7111=0

    y-z+10i^ + z-x-3j^ +x-y-7k^=0

    y-z = 10, z-x = 3, x-y = 7

    Also, R.A=0 2x + 0.y + z = 0 z = -2x

    On solving, we obtain

    x = –1, y = –8, z = 2

    Hence, R= -i^-8j^+2k^

     

    View Answer
  • Q3

    Marks:1
    Answer:

    Explanation:

    View Answer
  • Q4

    A unit vector perpendicular to the plane ABC, where A, B and C
    are respectively the points
    (3, –1, 2), (1, –1, –3) and (4, –3, 1), is

    Marks:1
    Answer:

    Explanation:

    View Answer
  • Q5

    Marks:1
    Answer:

    Explanation:

    View Answer