Class 12 Mathematics Chapter 4 Notes
In Class 12, students deal with high pressure and stress, mainly in Mathematics. The marks scored in the final board examination will be required to appear for future studies in their field of interest. Mathematics is considered to be a tricky subject. A strong understanding of all basic concepts and regular practice is very important to understanding complex topics. Students are advised to use the best study material, such as the Class 12 Mathematics chapter 4 notes, to help them get a clear understanding of determinants and concepts related to it.
The concepts explained in this chapter are very useful to analyse and find the solution. In Class 12 Mathematics chapter 4 notes, students will gain knowledge of determinants up to order 3. With the help of determinants, we can find out the uniqueness of a solution. The chapter has a wide range of applications in the Engineering, Science, etc., sectors. Also, concepts based on the properties of the matrix, cofactors, inverse, adjoint, and area of a triangle are covered in the Class 12 Mathematics chapter 4 notes.
Extramarks, an online learning platform, provides professional help and gives students the best academic notes to ace their exams. With the help of the class 12 chapter 4 mathematics notes, students can prepare for both the board exams and the competitive exams. Our notes are provided with detailed information, graphical representation, and easy language for students’ overall development.
Key Topics Covered In Class 12 Mathematics Chapter 4 Notes
The main topics covered in the Class 12 Mathematics chapter 4 notes are:
- Introduction
- Determinant Definition
- Properties
- Area of a Triangle
- Minors and Cofactors
- Adjoint of a Matrix
- The inverse of a Matrix
- Applications
- Solution of a system of linear equations
A brief of the key topics covered in class 12 Mathematics chapter 4 notes is as under.
INTRODUCTION:
The Class 12 Mathematics chapter 4 notes include various complex concepts related to determinants and their applications. To ace this chapter, students must learn concepts introduced in Class 11 as well as chapter 3 of the NCERT books.
RECALL:
If the system of equations is given as
a1x + b1y=c1 and a2x + b2y=c2, then the matric representation will be
The solution of this system is all the values of variables x and y, which satisfy the linear equations in the system.
DEFINITION OF DETERMINANT:
The determinant of any square matrix is a scalar value that is calculated from all elements of the matrix, which implies, a for every square matrix A of order n is associated with a number called the determinant of that matric A and is denoted by A (mod A), det (A) or Δ .
Consider A =
The scalar value for matrix A is a1b2–b1a2
A= a11b22–b12a21
NOTE: Only square matrices (number of rows and columns are equal) have determinants.
TYPES OF DETERMINANTS:
- First Order Determinant: The determinant of a matrix, say A of order one, is known as the First-order determinant. The value of the determinant is said to be the element of matrix A.
Consider A = [2]
Therefore determinant = 2= 2
- Second Order Determinant – The determinant of a matrix, say A of order two, is known as the Second-order determinant.
Consider A =
Therefore, A=
(4 x 3) – (5 x 2) = 12 – 10 = 2
- Third Order Determinant – The determinant of a matrix, say A of order three, is known as the third-order determinant.
Consider A =
|
a1 |
b1 |
c1 |
|
|
a2 |
b2 |
c2 |
|
|
a3 |
b3 |
c3 |
|
Then A =
|
a1 |
b1 |
c1 |
|
|
a2 |
b2 |
c2 |
|
|
a3 |
b3 |
c3 |
|
as a1(b2c3– b3c2) – b1(a2c3– a3c2) + c1(a2b3– a3b2)
NOTE:
Consider two square matrices A and B having order n and A=kB, then |A|=kn|B|, n N
PROPERTIES OF DETERMINANTS:
Let us glance through some properties of the Determinants, which are discussed in Class 12 Mathematics Chapter 4 Notes.
Property 1– the value of the determinant remains the same even after interchanging the rows and columns. Symbolic representation Ci Ri
Consider A=
(4 x 3) – (5 x 2) = 12 – 10 = 2
And A=
(4 x 3) – (2 x 5) = 12 – 10 = 2
This implies that:
If A is a square matrix, then det (A) = det (A’), where A’ is the transpose of matrix A.
Property 2– From the matrix, if the elements of any two columns (or rows) of the determinants are interchanged, then the sign of determinants will change. Symbolic representation Ci Cj or Ri Rj
Property 3– If the matrix has any two rows or columns equal or identical, then we can say that the value of the determinant is equal to 0.
Property 4– If every element of a row or a column in a matrix is multiplied by k, then to obtain the value of the determinant, the original determinant is multiplied by k, where k is a constant.
Property 5– If the elements of any row or a column of a determinant are expressed as the sum of two or more terms, then we can say that the original determinant can also be expressed as the sum of two or more determinants.
Property 6– If for each element of a row or a column of the given determinant, the equimultiples of the analogous elements of other row or column respectively are added, then we can say that the value of the original determinant remains the same.
The symbolic representation of the operation performed is Ri Ri+ kRj or Ci Ci+ kCj.
Property 7– If every element in a row or column of the given determinant is zero, then the value of the determinant is zero.
Property 8- Consider an upper triangular matrix or low triangular matrix, i.e., all elements on one side of the diagonal of the matrix are zeroes. The value of the determinant of such a matrix can be calculated by multiplying all diagonal elements.
In simple words, the determinant of an upper (lower) triangular matrix is equal to the product of all the elements in the diagonal.
Visit the Extramarks platform to access the class 12 mathematics chapter 4 notes. Gain in-depth information and understand each property in detail.
AREA OF A TRIANGLE:
Let the vertices of a triangle be (x1, y1),(x2, y2) and (x3, y3). Then the area of the triangle is defined as
A=12[x1(y2−y3) + x3(y3−y1) + x3(y1−y3)].
Representation of area in the form of determinant = = 12 x determinant
Determinant is given as
Remember:
- The area is a positive quantity. Therefore determinant will be positive
- In case the area is already given, then use both the positive and negative values of the determinant.
- The area of a triangle with three collinear points is equal to zero.
The class 12 mathematics notes chapter 4 includes several problems based on the area of the triangle for students to practice and master this concept.
Minors of the Determinant:
Representation: Mij
Minor of any element is calculated by deleting the ith row and jth column in which the element lies. For a21 we delete the 2nd row and first column.
Minor of any element of the given determinant of order n, where n ≥ 2 is a determinant of order n – 1.
Cofactor of the Determinant:
Representation: Aij
Cofactor of an element aij is calculated by multiplying the minor of the element with (-1)i+j
Cofactor of element aij (Aij) = (-1)i+jMij
Adjoint of a Matrix:
The adjoint of a matrix is the matrix obtained by the transpose of a cofactor matrix.
Singular Matrices
A singular matrix is defined as the square matrix whose determinant is zero.
Non-Singular Matrices
A Non-singular matrix is defined as the square matrix whose determinant is a non-zero value.
THEOREMS:
Theorem 1 – Let A be any square matrix of order n, then A (adj A) = (adj A) A =|A| I, where I is the identity matrix of the same order.
Theorem 2 – Let A and B be the non-singular matrices of order n, then their product, i.e., AB and BA, will also be non-singular matrices of the same order n.
Theorem 3 – Let A and B be two square matrices of order n. The determinant of the product of matrix AB is given as the product of the respective determinants. It is written as AB=|A||B|.
Theorem 4 – A square matrix is invertible (inverse exists) iff the matrix is non-singular. So, for any matrix A, the inverse of the matrix is A-1= 1A(adj A).
Refer to the class 12 chapter 4 mathematics notes to access unlimited problems for extra practice.
APPLICATIONS:
- Matrices and determinants are used to solve systems of linear equations with respect to two or three variables. They are also used to check the consistency of the given system of linear equations.
- A Consistent system is said to be a system of equations whose solution can be found or exists.
- An Inconsistent system is said to be a system of equations whose solution cannot be found or does not exist.
- The value of the determinant is a number that is capable of determining the uniqueness of the solution of the given system of linear equations.
SOLUTION TO THE SYSTEM OF LINEAR EQUATIONS:
Consider a system,
a1x + b1y=c1 and a2x + b2y=c2, then the matric representation will be
It is represented as AX = B ….. (1)
Case 1: A is a non-singular matrix
In this case, we premultiply A-1to both sides of equation 1
Therefore, we get (A-1) AX = (A-1).B
Using associativity, (A-1A) X = (A-1).B
I X = (A-1).B
We get, X = (A-1).B
The value of X provides a unique solution. This method is commonly known as the matrix method.
Case 2: A is a singular matrix
In this case, firstly, we calculate (adj A) B
Depending on the value of (adj A) B, we get our result.
(adj A)B is a non-zero matrix: Solution does not exist. The system of equations is said to be inconsistent with no solution.
(adj A)B is a zero matrix: Solution exists. The system of equations is said to be either consistent with many solutions or inconsistent.
Find the Class 12 Mathematics chapter 4 notes at Extramarks by subscribing to us.
Chapter 4 Mathematics Class 12 Notes: Exercises & Answer Solutions
Based on the latest guidelines and norms of CBSE, our class 12 mathematics chapter 4 notes provide an engaging and fun learning experience. Detailed answers, stepwise solutions, formulas, derivations, and important questions are all included in the notes. Students will gain a deeper knowledge of determinants and also learn how to apply the theoretical knowledge to solve the system of a linear equation to find its solution.
The Class 12 Mathematics chapter 4 notes are prepared lucidly in an easy language so that all students can comprehend them easily, irrespective of their intelligence quotient. These notes provide quick revision and are a great resource that will help to save time during stressful exam days. Get an overview of the chapter on Extramarks and master every topic included in the class 12 mathematics notes chapter 4.
Check out the solution to all exercise problems, miscellaneous questions and other CBSE extra questions by clicking on the link mentioned below:
NCERT Exemplar Class 12 Mathematics
The study materials such as NCERT Exemplar help students to prepare efficiently for their examination and also develops a keen interest in the concepts. At Extramarks, we aim to empower and motivate students by offering a solution for the complete curriculum. Through interactive learning, engaging study materials and the use of the latest technology, students can reach their full potential and attain high scores. The NCERT Exemplar and class 12 mathematics chapter 4 notes help students to learn several shortcut techniques to quickly solve problems. Using the best study materials, students get access to unlimited questions for them to practice, thus reducing their chances of making mistakes.
Extramarks, a trustworthy learning partner, focuses on improving the learning outcomes progressively. Studying from the NCERT Exemplar and class 12 mathematics chapter 4 notes helps students to analyse their strong and weak areas. This enables them to plan their schedule in an informed manner.
Key Features Of Class 12 Mathematics Chapter 4 Notes
The key features of Extramarks Class 12 Mathematics chapter 4 notes are as follows:
- The Class 12 Mathematics chapter 4 notes help students to accomplish and achieve success in the final examinations. It strengthens the basic knowledge and focuses on providing a deeper understanding of complex concepts.
- The NCERT Solutions are curated in accordance with the CBSE Syllabus. It also follows the rules and latest guidelines given by the CBSE board for the year 2021-22.
- Students become aware of the exam paper pattern, marking system, chapter-wise weightage and the type of questions asked in the board exams.
- The Extramarks notes are curated by some of the best and most experienced teachers who have years of experience in mathematics. Students can confidently depend on these notes for their exam preparation.
- Students can access the CBSE revision notes from any electronic devices such as iPads, tablets, mobile, and desktops. Extramarks make sure that every student can enjoy the benefits of academic notes.
- With the help of the Class 12 Mathematics Chapter 4 notes, students can also prepare for other competitive examinations such as IIT, JEE and other Engineering entrance exams.
- Students can develop time-management, problem-solving and analytical skills.