
CBSE Important Questions›

CBSE Previous Year Question Papers›
 CBSE Previous Year Question Papers
 CBSE Previous Year Question Papers Class 12
 CBSE Previous Year Question Papers Class 10

CBSE Revision Notes›

CBSE Syllabus›

CBSE Extra Questions›

CBSE Sample Papers›
 CBSE Sample Papers
 CBSE Sample Question Papers For Class 5
 CBSE Sample Question Papers For Class 4
 CBSE Sample Question Papers For Class 3
 CBSE Sample Question Papers For Class 2
 CBSE Sample Question Papers For Class 1
 CBSE Sample Question Papers For Class 12
 CBSE Sample Question Papers For Class 11
 CBSE Sample Question Papers For Class 10
 CBSE Sample Question Papers For Class 9
 CBSE Sample Question Papers For Class 8
 CBSE Sample Question Papers For Class 7
 CBSE Sample Question Papers For Class 6

ISC & ICSE Syllabus›

ICSE Question Paper›
 ICSE Question Paper
 ISC Class 12 Question Paper
 ICSE Class 10 Question Paper

ICSE Sample Question Papers›
 ICSE Sample Question Papers
 ISC Sample Question Papers For Class 12
 ISC Sample Question Papers For Class 11
 ICSE Sample Question Papers For Class 10
 ICSE Sample Question Papers For Class 9
 ICSE Sample Question Papers For Class 8
 ICSE Sample Question Papers For Class 7
 ICSE Sample Question Papers For Class 6

ICSE Revision Notes›
 ICSE Revision Notes
 ICSE Class 9 Revision Notes
 ICSE Class 10 Revision Notes

ICSE Important Questions›

Maharashtra board›

RajasthanBoard›
 RajasthanBoard

Andhrapradesh Board›
 Andhrapradesh Board
 AP Board Sample Question Paper
 AP Board syllabus
 AP Board Previous Year Question Paper

Telangana Board›

Tamilnadu Board›

NCERT Solutions Class 12›
 NCERT Solutions Class 12
 NCERT Solutions Class 12 Economics
 NCERT Solutions Class 12 English
 NCERT Solutions Class 12 Hindi
 NCERT Solutions Class 12 Maths
 NCERT Solutions Class 12 Physics
 NCERT Solutions Class 12 Accountancy
 NCERT Solutions Class 12 Biology
 NCERT Solutions Class 12 Chemistry
 NCERT Solutions Class 12 Commerce

NCERT Solutions Class 10›

NCERT Solutions Class 11›
 NCERT Solutions Class 11
 NCERT Solutions Class 11 Statistics
 NCERT Solutions Class 11 Accountancy
 NCERT Solutions Class 11 Biology
 NCERT Solutions Class 11 Chemistry
 NCERT Solutions Class 11 Commerce
 NCERT Solutions Class 11 English
 NCERT Solutions Class 11 Hindi
 NCERT Solutions Class 11 Maths
 NCERT Solutions Class 11 Physics

NCERT Solutions Class 9›

NCERT Solutions Class 8›

NCERT Solutions Class 7›

NCERT Solutions Class 6›

NCERT Solutions Class 5›
 NCERT Solutions Class 5
 NCERT Solutions Class 5 EVS
 NCERT Solutions Class 5 English
 NCERT Solutions Class 5 Maths

NCERT Solutions Class 4›

NCERT Solutions Class 3›

NCERT Solutions Class 2›
 NCERT Solutions Class 2
 NCERT Solutions Class 2 Hindi
 NCERT Solutions Class 2 Maths
 NCERT Solutions Class 2 English

NCERT Solutions Class 1›
 NCERT Solutions Class 1
 NCERT Solutions Class 1 English
 NCERT Solutions Class 1 Hindi
 NCERT Solutions Class 1 Maths

JEE Main Question Papers›

JEE Main Syllabus›
 JEE Main Syllabus
 JEE Main Chemistry Syllabus
 JEE Main Maths Syllabus
 JEE Main Physics Syllabus

JEE Main Questions›
 JEE Main Questions
 JEE Main Maths Questions
 JEE Main Physics Questions
 JEE Main Chemistry Questions

JEE Main Mock Test›
 JEE Main Mock Test

JEE Main Revision Notes›
 JEE Main Revision Notes

JEE Main Sample Papers›
 JEE Main Sample Papers

JEE Advanced Question Papers›

JEE Advanced Syllabus›
 JEE Advanced Syllabus

JEE Advanced Mock Test›
 JEE Advanced Mock Test

JEE Advanced Questions›
 JEE Advanced Questions
 JEE Advanced Chemistry Questions
 JEE Advanced Maths Questions
 JEE Advanced Physics Questions

JEE Advanced Sample Papers›
 JEE Advanced Sample Papers

NEET Eligibility Criteria›
 NEET Eligibility Criteria

NEET Question Papers›

NEET Sample Papers›
 NEET Sample Papers

NEET Syllabus›

NEET Mock Test›
 NEET Mock Test

NCERT Books Class 9›
 NCERT Books Class 9

NCERT Books Class 8›
 NCERT Books Class 8

NCERT Books Class 7›
 NCERT Books Class 7

NCERT Books Class 6›
 NCERT Books Class 6

NCERT Books Class 5›
 NCERT Books Class 5

NCERT Books Class 4›
 NCERT Books Class 4

NCERT Books Class 3›
 NCERT Books Class 3

NCERT Books Class 2›
 NCERT Books Class 2

NCERT Books Class 1›
 NCERT Books Class 1

NCERT Books Class 12›
 NCERT Books Class 12

NCERT Books Class 11›
 NCERT Books Class 11

NCERT Books Class 10›
 NCERT Books Class 10

Chemistry Full Forms›
 Chemistry Full Forms

Biology Full Forms›
 Biology Full Forms

Physics Full Forms›
 Physics Full Forms

Educational Full Form›
 Educational Full Form

Examination Full Forms›
 Examination Full Forms

Algebra Formulas›
 Algebra Formulas

Chemistry Formulas›
 Chemistry Formulas

Geometry Formulas›
 Geometry Formulas

Math Formulas›
 Math Formulas

Physics Formulas›
 Physics Formulas

Trigonometry Formulas›
 Trigonometry Formulas

CUET Admit Card›
 CUET Admit Card

CUET Application Form›
 CUET Application Form

CUET Counselling›
 CUET Counselling

CUET Cutoff›
 CUET Cutoff

CUET Previous Year Question Papers›
 CUET Previous Year Question Papers

CUET Results›
 CUET Results

CUET Sample Papers›
 CUET Sample Papers

CUET Syllabus›
 CUET Syllabus

CUET Eligibility Criteria›
 CUET Eligibility Criteria

CUET Exam Centers›
 CUET Exam Centers

CUET Exam Dates›
 CUET Exam Dates

CUET Exam Pattern›
 CUET Exam Pattern
Class 10 Mathematics Revision Notes for Chapter 3 – Pair of Linear Equations in Two Variables
In Class 10, Mathematics is one of the most crucial subjects. Students should practise it daily to score good marks and improve their overall percentage in the board examinations. Extramarks has created Class 10 Mathematics Chapter 3 Notes to help students understand the concepts better. They have covered all the important questions, topics, and concepts in Class 10 Chapter 3 Mathematics Notes to help students in preparation. You can rely on the notes for board exam preparation as they have been created according to the CBSE syllabus and NCERT books.
Quick Links
ToggleClass 10 Mathematics Revision Notes for Pair of Linear Equations in Two Variables of Chapter 3
Access Class 10 Mathematics Chapter 3 – Pair of Linear Equations in two Variables
Linear Equation
An equation is defined as a statement that two mathematical expressions with one or more variables are equal.
Linear equations are those in which the powers of all the variables are one. A linear equation’s degree is always one.
The general form of representing the linear equations is ax + by + c = 0, where a and b cannot be zero simultaneously.
Solution of an Equation
The solution of a linear equation in two variables can be given by a pair of values (x,y), one for ‘x’ and the other for ‘y’, that make the two sides of an equation equal.
Let us take an example:
If 2x + y = 4, then (0,4) is one of the solutions that satisfy the equation. It can have a number of solutions.
Pair of Linear Equations in Two Variables
The pair of linear equations in two variables can be represented as follows:
a1x + b1y + c1 = 0
a2x + b2y + c2 = 0
The nature of two straight lines in a plane is as follows:
 Both the lines intersect at exactly one point.
 They are parallel to each other.
 Both the lines coincide with each other.
Graphical Method of Solutions
One can find the solutions to a pair of linear equations through the graphical method given below.
 Plot both the equations.
 Now find the point of intersection of the lines.
Let us take an example:
2x + y – 6 = 0 and 4x – 2y – 4 = 0.
The point of intersection for the two graphs will be (2,2). Take a look at the graph below.
Substitution Method
We will explain the substitution method with an example.
7x – 15y = 2 (1)
x + 2y = 3 (2)
Solution:
Step 1: Pick any equation and write one variable in terms of the other. If we take equation 2, then
x + 2y = 3
And now we write it as x = 3 – 2y (3)
Step 2: Now substitute the value of x in equation (1). We get
7(3 – 2y) – 15y = 2
21 – 14y – 15y = 2
29y = 19
Therefore, y = 19/29
Step 3: By substituting the value of y in equation 3, we will get
x = 3 – 2 (19/29) = 49/29
Hence the solution is x = 49/29 and y = 19/29.
Verification: Substituting x = 49/29 and y = 19/29, we can verify that both the equations are satisfied.
Let’s study the substitution method stepbystep to better comprehend it:
Step 1: Find the value of one variable, let’s say y, in terms of the other variable, i.e., x, as per your convenience.
Step 2: Substitute the value of y in the other equation, and simplify it to a single equation in one variable, i.e., in terms of x, which can be solved.
Step 3: Now complete the process by substituting the value of x or y from Step 2 in the equation used in Step 1 to obtain the values of the other variable.
Elimination Method
This method of eliminating one variable is sometimes more convenient than the substitution method. Let’s see how this method works.
Step 1: Start by multiplying both the equations by some suitable nonzero constants to obtain the coefficients of one variable (either x or y) numerically equal.
Step 2: Then, you have to add or subtract one equation from the other so that one variable gets eliminated.
Step 3: Now solve the equation in one variable (x or y) to obtain its value.
Step 4: Substitute the value of x or y in either equation to get the value of the other variable.
Let us take an example:
2x + 3y = 8 (1)
4x + 6y = 7 (2)
Multiply equation (1) by 2 and equation (2) by 1 to make the coefficients of x equal.
4x + 6y = 16 (3)
4x + 6y = 7 (4)
Now, by subtracting equation (4) from equation (3), we will get
(4x – 4x) + (6y – 6y) =16 7
0 = 9, which is a false statement.
Hence the pair of equations has no solution.
Cross Multiplication Method
Cross multiplication method is used to solve linear equations in two variables. We can understand the cross multiplication method by the following example.
Let’s suppose, a1x + b1y + c1 = 0 and a2x + b2x + c2 = 0
By using cross multiplication, we can get the values of x and y in the following ways:
x = b1 c2 – b2 c1 / b2 a1 – b1 a2
y = c1 a2 – c2 a1 / b2 a1 – b1 a2
Where
b2 a1 – b1 a2 is not equal to 0.
Solution:
x/ b1 c2 – b2c1
= y / c1 a2 – c2 a1
= 1/b2 a1 – b1 a2
You can use the diagram given below to understand the cross multiplication method better.
Two conditions can arise in this method:
Case 1:
If a1/a2 is not equal to b1/b2, then we will have a unique solution, and the two linear equations in two variables will be consistent.
Case 2:
If a1/a2 = b1/b2 = c1/c2, then there will be infinitely many solutions, and the lines will be coincident and thus dependent and consistent.
Case 3:
If a1/a2 = b1/b2 ≠ c1/c2, then there will be no solution, and the pair of linear equations will be inconsistent.
FAQs (Frequently Asked Questions)
1. How can I access the past year's question papers for Class 10 exam preparation?
Candidates studying in Class 10 can access the CBSE past years’ question papers and study materials from the website of Extramarks for board exam preparation. In addition, CBSE sample papers are also available to help students in their preparation.
2. How should students prepare for the Class 10 Mathematics exam?
Students should focus more on quality than quantity. To score better in the examination, candidates should practise all formulas, numerical and CBSE extra questions to understand the types of questions asked in the examination.
3. Define the pair of linear equations in two variables.
A linear equation in two variables can be represented in the form of ax + by + c = 0, where a, b and c are real numbers, but a and b are not equal to zero. Whereas, in a pair of linear equations in two variables, we deal with two such equations.
4. Solve 9x + 3y + 12 = 0 and 18x + 6y + 24 = 0
These are two given equations:
9x + 3y + 12 = 0 (1)
18x + 6y + 24 = 0 (2)
By comparing these two equations, we will get:
a1x + b1y + c1 = 0
And a2x + b2y + c2 = 0
We will get the following coefficients as follows:
a1 = 9, b1 = 3, c1 = 12
a2 = 18, b2 = 6, c2 = 24
Now,
(a1/a2) = 9/18 = ½
(b1/b2) = 3/6 = ½
(c1/c2) = 12/24 = ½
Hence, (a1/a2) = (b1/b2) = (c1/c2)
Therefore, the pair of equations in the question have infinite solutions, and the lines are coincident.