CBSE Class 11 Maths Revision Notes Chapter 13

Class 11 Mathematics Revision Notes for Limits and Derivatives of Chapter 13

Limits and Derivatives come under the field of calculus, which can be overwhelming and difficult for students to understand. Revision notes can help them to grasp core concepts clearly and build a strong base in this chapter. 

Extramarks provides Revision Notes for Class 11 Mathematics Chapter 13 which contains lucid and concise explanations for every topic. It ensures an in-depth understanding of key concepts and formulas that will assist students in solving the chapter’s questions. Extramarks can help students learn this chapter with ease and score high marks. 

Limits and Derivatives Class 11 Notes – Chapter Overview

Class 11 Revision Notes Limits and Derivatives 

Extramarks Revision Notes for Class 11 Mathematics Chapter 13 Limits and Derivatives contain all important concepts of this chapter like Limits and the 7 Theorems, Limits of Polynomials and Rational functions, algebra of limits and all the respective formulas. These notes are easy to access and students can use them for self-study and for quick revisions. 

Class 11 Mathematics Revision Notes Chapter 13

  • Consider a function f(x)=x2. Plotting it gives the value of x which approaches 0 as the value of function f(x) moves to 0.
  • If x→a, f(x)→l, then the limit of the function f(x) is represented by l. This is written symbolically as limx→af(x)=l.
  • The function should assume at a given point x=a irrespective of the limits.
  • X can approach a number in two ways, from left or right. This means that all the values of x near a could be less or greater than a.
    • Right-hand limit – Value of f(x) which is dictated by values of f(x) when x tends to from the right which is written as limx→a+f(x).
    • Left-hand limit – Value of f(x) which is dictated by values of f(x) when x tends to from the left which is written as limx→a−f(x).
  • The limit of f(x) as x tends to zero does not exist (even though the function is defined at 0) since left and right-hand limits are different.
  • The common value is the limit and is denoted by limx→af(x) if the right and left-hand limits coincide.

Standard Limits – Listed Below Are Some Standard Limits

  1. limx→p (xn – pn)/x – p = npn-1
  2. limx→0 (sin x)/x = 1
  3. limx→p (sin (x – p))/(x – p) = 1
  4. limx→0 (tan x)/x = 1
  5. limx→p (tan (x – p))/(x – p) = 1
  6. limx→0 (sin-1 x)/x = 1
  7. limx→0 (tan-1 x)/x = 1
  8. limx→0 (px – 1)/x = logep, p > 0 and p 1

Algebra of Limits:

If f and g are two functions such that both limx→af(x) and limx→ag(x) exist, then:

  • Limit of sum of two functions is sum of the limits of the functions, i.e. limx→a[f(x)+g(x)]=limx→af(x)+limx→ag(x).
  • Limit of difference of two functions is difference of the limits of the functions, i.e. limx→a[f(x)−g(x)]=limx→af(x)−limx→ag(x)
  • Limit of product of two functions is product of the limits of the functions, i.e., limx→a[f(x).g(x)]=limx→af(x).limx→ag(x)
  • Limit of quotient of two functions is the quotient of the limits of the functions (whenever the denominator is non zero), i.e., limx→af(x)g(x)=limx→af(x)limx→ag(x)
  • In a special case, when g is the constant function such that g(x)=λ, for some real number λ, we have limx→a[(λ.f)(x)]=λ.limx→af(x)

Polynomial Function:

A polynomial function is a function f(x) if it is a zero function or if f(x)=a0+a1x+a2x2+…+anxn where aiS is are real numbers such that an≠0 for some natural number n.

Rational Function:

A rational function is f(x)=g(x)/h(x) where g(x) and h(x) are polynomials such that h(x)≠0

limx→af(x)=limx→ag(x)/h(x)= limx→ag(x)/limx→ah(x) = g(a)/h(a).

Derivatives:

Derivatives – The derivative of a function y = f(x) is obtained by applying the equation change in y/change in x. Assume x goes from x to dx, and y changes from y to f(x) to f(x + dx), so,

  • Derivative of a function at point x is given by: f′(x)=limh→0f(x+h)−f(x)/h .
  • Derivative = change in y/change in x = dy/dx = f(x + dx) – f(x)/dx

Some Standard Derivatives – Mentioned Below Are Some Standard Derivatives

  1. d(xi)/dx = ixi-1
  2. d(sin x)/dx = cos x
  3. d(cos x)/dx = -sin x
  4. d(tan x)/dx = sec2x
  5. d(cot x)/dx = -coses2x
  6. d(sec x)/dx = secx . tanx
  7. d(cosex x)/dx = -cosec x. cot x

Q.1

Find the limit :limx0sinx2x2x

Ans

We have,limx0sinx2x2x=limx0sinxx(2x1)=limx0sinxx×limx012x1=1×12(0)1limx0sinxx=1=1

Q.2

Free the limit:limx2[x34x2+4xx24]

Ans

We have, limx2x34x2+4xx24=limx2xx24x+4x24=limx2x(x2)(x2)(x2)(x+2)=limx2x(x2)(x+2)=2(22)(2+2)=04=0

Q.3

Compute:limx7(x+7)

Ans

limx7x+7=7+7=14.

Q.4

Compute:limx2x3+8x21

Ans

limx2x3+8x21=23+8221=8+841=163.

Q.5

Find the limit:limx3x29x3+9x6x2.

Ans

On substituting the value x=3,the expression reduces to 00.Now,limx3x29x3+9x6x2=limx3(x3)(x+3)xx2+96x=limx3(x3)(x+3)x(x3)2=limx3(x+3)x(x3)=3+33(33)=60=which is not defined.

Q.6

Prove that for any positive integer n,limxaxnanxa=nan1.

Ans

xnan=xaxn1+xn2a+xn3a2++xan2+an1limxaxnanxa=limxaxn1+xn2a+xn3a2++xan2+an1=an1+an2a+an3a2++aan2+an1=an1+an1++an1+an1=nan1

Q.7

Compute:limx01+x1x

Ans

Put y=1+x, so that when x0 then y1limx01+x1xlimy1y1y1=limy1y12112y1=121121=12aslimxaxnanxa=nan1

Q.8

Compute:limr12πr

Ans

limr12πr=2π×1=2π

Q.9

Evaluate:limx0sin6xsin3x.

Ans

limx0sin6xsin3x=limx0sin6x6x×3xsin3x×2=2limx0sin6x6xlimx0sin3x3x=2limx0sin6x6xlim3x0sin3x3x=211=2aslimx0sinxx=1

Q.10

Evaluate:limxπ2tan2xxπ2.

Ans

When we substitute π2x as y, then y0 as xπ2limxπ2tan2xxπ2=limy0tan2π2yy=limy0tan(π2y)y=limy0tan(2y)y=limy0tan(2y)y=limy0sin(2y)ycos(2y)=lim2y0sin(2y)2y×2cos(2y)=1×21=2

Q.11

Find limx0f(x)wheref(x)={1|x|,x0}.

Ans

It is given that=1|x|,x0We observe that when x approaches to zero from left side i.e.x is negative and close to zero then |x| is close to zero close to zero and positive.Therefore 1/|x|is large and positive.limx01|x|Similarly if x approaches to zero from right side, i.e.,x is positive and close to zero then |x|is close to zero and positive.Therefore 1/|x| is large and positive.limx0+1|x|Therefore limits exists and it tends to .

Q.12

Compute:limx0xsecx.

Ans

limx0xsecx=0×sec0=0×1=0

Q.13

If f(x)={mx2+n,x<0nx+m,0x1nx3+m,x>1For what values of m and n dolimx0f(x)and limx1f(x) both exist.

Ans

It is given thatfx=mx2+n,x<0nx+m,0x1nx3+m,x>1limx0f(x)andlimx1f(x)both exist.limx0f(x)=limx0+f(x)andlimx1f(x)=limx1+f(x)limh0f(0h)=limh0f(0 + h)andlimh0f(1h)=limh0f(1+ h)limh0m(h)2+n=limh0{nh + m}andlimh0{n(1h) + m}=limh0n (1 + h)3+ mn=mandn+m=n+mHencelimx0f(x)andlimx1f(x)both exist for n=m.

Q.14 Compute the derivative of sin x w.r.t. x by first principle.

Ans

Let f(x)=sinx.Then,df(x)dx=limh0f(x+h)f(x)h=limh0sin(x+h)sin(x)h=limh02cos2x+h2sinh2h=limh0cosx+h2limh0sinh2h2=cosx1=cosx

Q.15 Compute the derivative of cos2x.

Ans

df(x)dx=ddx(cosxcosx)=(cosx)cosx+cosx(cosx)(Byusingproductrule)=(sinx)cosx+cosx(sinx)=2sinxcosx=sin2x

Q.16

Find the derivative of :(a)3x4x2(b)(5y42y2+1)(y1)

Ans

(a) f(x)=3x4x23df(x)dx=3x4x2=342x=38x(b)f(y)=5y42y2+1y1Using the product rule,df(y)dy=ddy5y42y2+1(y1)=5y42y2+1(y1)+5y42y2+1(y1)=20y34y(y1)+5y42y2+1(1)=20y420y34y2+4y+5y42y2+1=25y420y36y2+4y+1

Q.17 Find the first derivative of (13t – 1) (5t3 + 2) w.r.t.t.

Ans

df(t)dt=ddt(13t1)5t3+2=13t15t3+2+(13t1)5t3+2(Using the product rule)=135t3+2+(13t1)15t2=65t3+26+195t315t2=260t315t2+26

Q.18

Find the first derivative of x+axaby using First Principle.

Ans

Letf(x)=x+axa.Then,df(x)dx=limh0f(x+h)f(x)hdf(x)dx=limh0x+h+ax+hax+axah=limh0(x+h+a)(xa)(x+a)(x+ha)h(x+ha)(xa)=limh0x2+hx+axaxaha2x2+ax+hx+ahaxa2h(x+ha)(xa)=limh0x2+hx+axaxaha2x2+ax+hx+ahaxa2h(x+ha)(xa)=limh0x2+hx+axaxaha2x2axhxah+ax+a2h(x+ha)(xa)=limh02ahh(x+ha)(xa)=2a(xa)(xa)=2ax22ax+a2

Q.19 Compute the derivative of √x from the first principle.

Ans

Letf(x)=x and f(x+h)=(x+h)Then by first principlef(x)=limx0f(x+h)f(x)h=limx0(x+h)xh×(x+h)+x(x+h)+x=limx0(x+h)xh((x+h)+x)=limx0hh((x+h)+x)=1x+xf(x)=12x.

Q.20

Compute the first derivative ofx1+tanx.

Ans

f(x)=x1+tanxUsing quotient rule for differentiation,f(x)=(1+tanx)(x)x(1+tanx)(1+tanx)2=(1+tanx)(1)xsec2x(1+tanx)2=1+tanxxsec2x(1+tanx)2

Q.21

Compute the first derivative ofsinxcos(x+a).

Ans

f(x)=sinxcos(x+a)Using the quotient rule for differentiation we getf(x)=cos(x+a)(sinx){cos(x+a)}sinxcos2(x+a)=cos(x+a)cosx{sin(x+a)}sinxcos2(x+a)=cosxcos(x+a)+sinxsin(x+a)cos2(x+a)=cos(x+ax)cos2(x+a)=cosacos2(x+a)

Q.22 Find the derivative of the function f(x) = 2x2 + 3x – 3 at x = 2 by first principal method.

Ans

Wefindthederivativeofthefunctionatx=2.Wehavef(2)=limh0f(2+h)f(2)h=limh02(2+h)2+3(2+h)32(2)2+3(2)3h=limh024+h24h6+3h3[863]h=limh08+2h28h6+3h38+6+3h=limh02h25hh=limh02h5=2(0)5=5

Q.23

Evaluate:limx01cos2xx

Ans

limx01cos 2xx=limx02sin2xx=limx02sin x×sin xx=2×0×1=0

Q.24 Find the derivative of f(x) = x2cosx by first principle.

Ans

Letf(x)=x2cosx. Then, fx+h=x+h2cosx+hddxf(x)=limx0f(x+h)f(x)h=limx0(x+h)2cos(x+h)x2cosxh=limx0x2+2xh+h2cos(x+h)x2cosxh=limx0x2{cos(x+h)cosx}+h(2x+h)cos(x+h)h=limx0x2{cos(x+h)cosx}h+limx0h(2x+h)cos(x+h)h=limx0x22sinh2sin2x+h2h+limx02x+hcosx+h=limx0sinh2h2×x2sin2x+h2+2xcosx=1×x2sinx+2xcosx=x2sinx+2xcosx

Q.25

Compute the first derivative of1+1x11x.

Ans

f(x)=1+1x11x=x+1xx1x=x+1x1Using quotient rule for differentiation,f(x)=(x1)(x+1)(x1)(x+1)(x1)2=(x1)(1)(1)(x+1)(x1)2=x1x1(x1)2=2(x1)2,x1

Q.26

Evaluate:limx0sinx2sin(3x)+sin(5x)x

Ans

limx0sinx2sin(3x)+sin(5x)x=limx0sinxsin(3x)sin(3x)+sin(5x)x=limx0[sinxsin(3x)]+[sin(5x)sin(3x)]x=limx02sin x cos(2x)+2sin x cos(4x)x=limx02sin x[cos(4x)cos(2x)]x=2limx0sin xxlimx0[cos(4x)cos(2x)]=2×1×0=0

Q.27

Prove thatddx(xn)=nxn1.

Ans

We can prove it with the help of first principle.We have f(x)=xndf(x)dx=limh0f(x+h)f(x)h=limh0(x+h)nxnh=limh0(x+h)nxn(x+h)x=limzxznxnzx…(i)where z=x+h and zx as h0Usinglimxaxnanxa=nan1 in(i)we can conclude thatdf(x)dx=nxn1Hence,ddxxn=nxn1.

Q.28

Differentiate with respect to x:ax2+bx+cx.

Ans

ddxax2+bx+cx=ddxax2x+bxx+cx=ddxax32+bx12+cx12=ddxax32+ddxbx12+ddxcx12=addxx32+bddxx12+cddxx12=a32x12+b12x12+c12x32=3a2x12+b2x12c2x32.

Q.29 Find the first derivative of x3 – 4 at x = 2.

Ans

f(x) = x3 – 4
f'(x) = 3x2
f'(2) = 3 × 22 = 3 × 4 = 12

Q.30

For the function,f(x)=x100100+x9999++x22+x+1.Prove that f(1)=100f(0).

Ans

f(x)=x100100+x9999+.+x22+x+1f(x)=100x99100+99x9899++2x2+1=x99+x98+.+x+1LHS- f(1)=199+198+.+1+1(100 times )=100RHS- f(0)=099+098+.+0+1=1Thus, f(1)=100f(0)

Q.31

Evaluate:limx21x+12x+2.

Ans

On substituting the value x=2, the expression reduces to 0/0.Therefore,limx21x+12x+2=limx2x+22xx+2=limx212x=12(2)=14

Q.32

Evaluate:limx2exe2x2.

Ans

limx2exe2x2=limx20e2ex21x2=e2limy0ey1y[ Let x2=y]=e2×1limx0ex1x=1=e2

Q.33

Evaluate:limx2e3+xe5x2

Ans

limx2e3+xe5x2=limx20e5ex21x2=e5limy0ey1y[Let x2=y]=e5×1limx0ex1x=1=e5

Q.34

Evaluate:limx5exe5x5

Ans

limx5exe5x5=limx50e5ex51x5=e5limy0ey1y[ Let x5=y]=e5×1limx0ex1x=1=e5

Q.35

Evaluate:limx0e2sinx1x.

Ans

limx0e2sinx1sinx=2×limx0e2sinx12sinx=2×lim2sinx0e2sinx12sinx[asx0,2sinx0]=2×1limx0ex1x=1=2

Q.36

Evaluate:limx0x(e2x1)1cosx.

Ans

limx0xe2x11cosx=limx0e2x1x×limx0x21cosx=2lim2x0e2x12x×limx0x22sin2x2=2×lim2x0e2x12x×limx02x22sin2x2=4×lim2x0e2x12x×limx/20x22sin2x2=4×1×1limx0ex1x=1 andlimx0sinxx=1=4

Q.37

Evaluate:limx0x(e2x1)sinx.

Ans

limx0xe2x1sinx=limx0xsinx×2lim2x0e2x12x =1×2(1)limx0sinxx=1 andlimx0ex1x=1 =0

Q.38

Evaluate:limx0sinx+(e5x1)2x

Ans

limx0sinx+e5x12x=limx0sinx2x+limx0e5x12x=12limx0sinxx+52limx0e5x15x=12×1+52×1limx0sinxx=1 andlimx0ex1x=1=62=3

Q.39

Evaluate :limx0sinx+loge(1+x)2x

Ans

limx0sinx+loge(1+x)2x=limx0sinx2x+limx0loge(1+x)2x=12limx0sinxx+12limx0loge(1+x)x=12×1+12×1limx0sinxx=1 and limx0loge(1+x)x=1=1

Q.40

Find the following limit :limx0sinx3x3

Ans

Wehave,limx0sinx3x3=limx0sinxx3=limsinxx3=13limx0sinxx=1=1

Q.41

Find the following limit :limx0(x+sinxx)

Ans

Wehave,limx0x+sinxx=limx0xx+sinxx=limx01+limx0sinxx=1+1limx0sinxx=1=2

Q.42

Find the limit :limx3x29x3+2x15

Ans

Wehave,limx3x29x3+2x15=limx3(x3)(x+3)(x+5)(x3)=limx3(x+3)(x+5)=3+33+5=68=34

Q.43 Differentiate x logex with respect to x.

Ans

Lety=xlogexDifferentiating w.r.t. x,we getdydx=ddxxlogex=xddxlogex+logexddxx=x1x+logex.1=1+logex

Q.44 Differentiate sin x.ex with respect to x.

Ans

Lety=sinxexDifferentiating w.r.t. x,we getdydx=ddxsinxex=sinxddxex+exddxsinx=sinxex+excosx=ex(sinx+cosx)

Q.45 Differentiate sin2x with respect to x.

Ans

Let y=sin2xDifferentiating w.r.t. x,we getdydx=ddx{sinxsinx}=sinxddxsinx+sinxddxsinx=sinxcosx+sinxcosx=2sinxcosx

Q.46 Find the derivative of cos x/log x.

Ans

Let y=cosxlogxDifferentiate w.r.t. x,we getdydx=ddxcosxlogx=logxddxcosxcosxddxlogx(logx)2=logx{sinx}cosx1x(logx)2=sinxlogx1xcosx(logx)2

Q.47 Find the derivative of (x2+1)cos x.

Ans

Lety=x21cosxDifferentiation w.r.t. x,we getdydx=ddxx21cosx=x21ddxcosx+cosxddxx21=x21×sinx+cosx(2x+0)=x21sinx+2xcosx=x2sinx+sinx+2xcosx

Q.48 Find the derivative of (ax + b)(x+1)2.

Ans

Let y=ax+bx+12Differentiating w.r.t. x, we getdydx=ddx(ax+b)(x+1)2=(ax+b)ddxx2+2x+1+x+12ddxax+b=(ax+b)(2x+2)+x+12a+0=2(x+1)(ax+b)+ax+12=(x+1){2(ax+b)+a(x+1)}

Q.49

What is the value oflimx2(5x34x2+5)?(a)29(b)24(c)12(d)60

Ans

(a)29Explanation:limx25x34x2+5=limx25x3limx24x2+limx2(Addition Rule)=5limx2x34limx2x2+5(Product Rule)=523422+5(Limit of Polynomials)=4016+5=29

Q.50

The value oflimx02+x2xis(a)12(b) 12(c)122(d) 22

Ans

(c) 122Explanation:limx02+x2x=limx0(2+x2)(2+x+2)x(2+x+2)=limx02+x2x(2+x+2)=limx01(2+x+2)=122.

Q.51

If f(x)=xn and if f(1)=10, the value of n is(a)9(b)10(c)89(d)90

Ans

(b) 10Explanation:We have, f(x)=xnDifferentiating both sides w.r.t. x, we get f(x)=nxn1Putting x=1, we getf(1)=nf(1)=10n=10

Q.52

Evaluate: limx1072x(52)x210

Ans

Wehave,limx1072x(52)x210=limx1072x(52)2x210=limx1072x(7210)x210=limx1072x(7210)x210×72x+(7210)72x+(7210)=limx10(72x)(7210)(x10)(x+10)72x+(7210)=limx102x+210(x10)(x+10)72x+(7210)=limx102(x10)(x10)(x+10)72x+(7210)=limx102(x+10)72x+(7210)=limx1022107210+7210=110×2×7210=1210(52)=1210×(5+2)3=(5+2)610

Q.53

If f is a real valued function defined by f(x)=x2+4x+3,then find f(1) and f(3).

Ans

Wehave,f(x)=x2+4x+3f(1)=limh0f(1+h)f(1)hf(1)=limh0(1+h)2+4(1+h)+312+4×1+3hf(1)=limh0h2+6h+88hf(1)=limh0h2+6hhf(1)=limh0h+6=6and,f(3)=limh0f(3+h)f(3)hf(3)=limh0(3+h)2+4(3+h)+332+4×3+3hf(3)=limh0h2+10h+2424hf(3)=limh0h2+10hhf(3)=limh0h+10=10

Q.54

Differentiate etanx from first principal.

Ans

Let f(x)=etan xthen, f(x+h)=etan(x+h)ddx(f(x))=limh0f(x+h)f(x)hddx(f(x))=limh0etan(x+h)etanxhddx(f(x))=limh0etan xetan(x+h)tanx1h=etan xlimh0etan(x+h)tanx1tan(x+h)tan x×tan(x+h)tan xh=etan xlimh0etan(x+h)tan x1tan(x+h)tan xlimh0tan(x+h)tan xh=etan x×1×limh0tan(x+h)tan xh×tan(x+h)+tan xtan(x+h)+tan x=etanx×1×limh0tan(x+h)tan xh×1tan(x+h)+tan x=etan x×limh0sin hh cos(x+h)cos x×1tan(x+h)+tan x=etanx×1cos2h×12tan x=etan x2tan xsec2x

Q.55

Evaluate the following limits :(i)limx0(cosAxcosBxx2)(ii)limx0sin2x+sin3x2x+sin3x(iii)limx0sin2x+sin6xsin5xsin3x

Ans

(i)Wehave,limx0cosAxcosBxx2=limx02sinA+B2xsinBA2xx2cosCcosD=2sinC+D2sinDC2=2limx0sinA+B2xA+B2x×A+B2sinBA2xBA2××BA2=2B+A2BA2limx0sinA+B2xA+B2x×limx0sinBA2x2=B2A22(1)(1)=B2A22(ii)Wehave,limx0sin2x+sin3x2x+sin3x=limx0sin2xx+sin3xx2+sin3xx=limx02sin2x2x+3sin3x3x2+3sin3x3x=2limx0sin2x2x+3limx0sin3x3x2+3limx0sin3x3x=2×1+3×12+3×1=55=1iiiWehave,limx0sin2x+sin6xsin5xsin3x=limx02sin4xcos2x2sinxcos4x=limx0sin4x4x×4x×cos2xsinxx×x×cos4x=4limx0sin4x4x×limx0cos2xlimx0sinxx×limx0cos4x=41×11×1=4

Q.56

Differentiate the following function with respect to x :(i)logxx(ii) e3logx(iii) 2log2x(iv)5(23log2x)(v)5ex(vi)9(3x)

Ans

iWehave,ddxlogxx=ddx(1)=0.logxx=1(ii)Wehave,ddxe3logx=ddxelogx3=ddxx3=3x2elogk=k(iii)Wehave,ddx2log2x=ddx(x)=1alogan=n(iv)Wehave,ddx5.23log2x=5ddx23log2x=5ddx2log2x3=5ddxx3=53x2=15x2.(v)Wehave,ddx5ex=5ddxex=5ex(vi)Wehave,ddx9.3x=9ddx3x=93xloge3.

Q.57

(i) The differentiation of cosecx with respect toxiscosecxcotx.i.e., prove that ddx(cosecx)=cosecxcotx(ii) The differentiation of logax(a>0,a1) with respect to x is 1xlogeai.e., prove that ddx(logax)=1xlogea.

Ans

(i)Letf(x)=cosecx.Then,f(x+h)=cosec(x+h)ddx(f(x))=limh0f(x+h)f(x)hddx(f(x))=limh0cosec(x+h)cosecxhddx(f(x))=limh01sin(x+h)1sinxhddx(f(x))=limh0sinxsin(x+h)hsinxsin(x+h)ddx(f(x))=limh02sinxxh2cosx+x+h2hsinxsin(x+h)ddx(f(x))=limh02sinh2cos(x+h/2)hsinxsin(x+h)ddx(f(x))=limh0sin(h/2)h/2×limh0cos(x+h/2)sinxsin(x+h)sinh2=sinh2ddx(f(x))=(1)×cosxsinxsinx=cotxcosecx.Hence, ddx(cosecx)=cosecxcotx(ii)Let f(x)=logaxThen,f(x+h)=loga(x+h)ddx(f(x))=limh0f(x+h)f(x)hddx(f(x))=limh0loga(x+h)loga(x)h=limh0logax+hxhddx(f(x))=limh0loga1+hxh=limh0loga1+hxlogeahlogaλ=logeλlogeaddx(f(x))=1logealimh0loga1+hxxhx=1xlogealimh0loga1+hxhx=1Hence,ddxlogax=1xlogea

Q.58

The value of limxaxmamxa is_____.

Ans

xmam=(x a)(xm1+ xm2a+ xm3a2+ xm3a3++ xam2+ am1)limxaxmamxa=limxa(xm1+ xm2a+ xm3a2+ xm3a3++ xam2+ am1)   =xm1+xm2a+xm3a2+...+xam2+am1   =xm1+xm1+xm1+xm1+...+xm1+xm1   =mxm1

Q.59 The derivative of x3(x – 3)2 is ______.

Ans

The given function is x3(x3)2.Let y=x3(x3)2Differentiating w.r.t. x, we get  dydx=ddx{x3(x3)2}=x3ddx(x3)2+(x3)2ddxx3=x3×2(x3)+(x3)2×3x2=2x3(x3)+3x2(x3)2=x2(x3){2x+3(x3)}=x2(x3)(2x+3x9)=x2(x3)(5x9)The derivative of x3(x3)2is x2(x3)(5x9)¯.

Please register to view this section

FAQs (Frequently Asked Questions)

1. What are some of the real-world applications of the concept of derivatives?

 Examples of real-world applications of the derivative theory include:

  • Those who look after a reservoir need to know when it will overflow. This is accomplished by measuring the depth of the water at various points in time.
  • Rocket scientists can calculate the exact velocity with which a satellite should be launched from a rocket by knowing the height of the rocket at different points in time.
  • Knowing the present value of stock allows financial experts to forecast changes in its value in the stock market.

2. What is the sandwich theorem of limits?

According to the sandwich theorem of limits, if f, g, and z are real functions with f(x) <= g(x) <= z(x) for all x in the common domain, then for a real number a if limx→af(x)=l=limx→ag(x)  , then limx→ag(x)=l.

3. How can one ace Chapter 13 “Limits and Derivatives”?

Calculus is the study of rates of change and the continuity of quantities. “Limits and Derivatives” accounts for around half of calculus. To ace this chapter, you must:

  • Pay attention in class and clarify any doubts directly with teachers as soon as possible. Students can also view videos to gain a better understanding.
  • The more one practises this chapter, the better one will become. It is essential to practise examples and question papers. 
  • Extramarks revision notes are a good source to grasp the concepts mentioned in this chapter which is compiled in a concise form. It is written by subject matter experts according to the latest and updated CBSE syllabus.

4. Why should one learn about limits and derivatives?

Understanding the chapter and doing well on exams is aided by learning how mathematical concepts are applied in the actual world. Limits and derivatives play an important role not just in high-level mathematics but also in subjects such as physics and engineering. They can be used to calculate temperature variations, electric and magnetic fields, the rate of change of a quantity and other things.

5. What is the objective of studying limits and derivatives?

Learning real-world applications of principles in Mathematics aids in understanding the chapter, and as a result, scores well in exams. Limits and derivatives are significant not only in advanced mathematics but also in other fields such as physics and engineering. They can be used to calculate electric and magnetic fields, determine the rate of change of a quantity, and monitor temperature variations, among other things.

6. What is the Algebra of the Derivative of Functions?

Because the concept of derivatives directly involves limitations, we believe that the regulations for derivatives will closely follow those for limits. These are compiled in the following theorem.

5th Theorem:

Let f and g be two functions whose derivatives are specified in the same domain. Then,

  • The derivative of the sum of two functions is the sum of the functions’ derivatives.

d/dx [f(x)+g(x)]=d/dx f(x)+d/dx g(x) .

  • The derivative of the difference of two functions is the difference of the derivatives of the functions.

d/dx [f(x)−g(x)]= d/dx f(x)−d/dx g(x) .

  • The following product rule gives the derivative of the product of two functions.

d/dx [f(x).g(x)]=d/dx f(x).g(x)+f(x).d/dx g(x) .

  • The following quotient rule gives the derivative of the quotient of two functions (whenever the denominator is non–zero).

d/dx (f(x)/g(x))=d/dx f(x).g(x)−f(x)d/dx g(x) / (g(x))2 .