NCERT Solutions for Class 10 Science Chapter 12 (2025-2026)

This intriguing chapter from NCERT Solutions for Class 10 Science Chapter 12,Magnetic Effects of Electric Current explores the remarkable relationship between electricity and magnetism, revealing how electric current creates magnetic fields and powers countless devices in our daily lives. From understanding how a compass deflects near a current-carrying wire to learning the working principles of electric motors and generators, this chapter unveils the science behind modern electrical technology. This chapter is part of the comprehensive NCERT Solutions Class 1o Science series, which covers all chapters in detail.

The chapter covers magnetic fields around conductors, electromagnetic induction, Fleming's rules, and the functioning of electric motors, generators, and domestic circuits. Every solution has been designed keeping CBSE board exam patterns in mind, with clear diagrams, detailed explanations, and step-by-step problem-solving approaches that ensure students develop both conceptual clarity and practical understanding for their examinations.

NCERT Solutions for Class 10 Science Chapter 12 - All Exercise Questions

Class 10 Chapter 12 Science Questions & Answers –Magnetic Effects of Electric Current

Q1. Which of the following correctly describes the magnetic field near a long straight wire?

(a) The field consists of straight lines perpendicular to the wire.

(b) The field consists of straight lines parallel to the wire.

(c) The field consists of radial lines originating from the wire.

(d) The field consists of concentric circles centred on the wire.

Solution: The correct option is (d).

Explanation: The magnetic field lines around a straight current-carrying conductor are concentric circles and the centres of these circles lie on the wire.

 

Q2. Draw a labelled diagram of an electric motor. Explain its principle and working. What is the function of a split ring in an electric motor?

Solution: An electric motor is a device which converts electrical energy into mechanical energy. It is based on the principle that current carrying conductor experiences a force, when placed in a magnetic field.

When a current is allowed to flow through the coil ABCD by closing the key, the coil starts rotating anti-clockwise. It is because a downward force acts on length AB and at the same time, an upward force acts on length CD. Thus, the coil rotates anti-clockwise. Current in the length AB flows from A to B and the magnetic field acts from left to right, normal to length AB. Hence, according to Fleming’s left hand rule, a downward force acts on the length AB. Similarly, current in the length CD flows from C to D and the magnetic field acts from left to right, normal to the flow of current. Therefore, an upward force acts on the length CD. These two forces cause the coil to rotate anti-clockwise. After half a rotation, the position of AB and CD interchanges. The half-ring P comes in contact with brush X and half-ring Q comes in contact with brush Y. Hence, the direction of current in the coil ABCD gets reversed. The current flows through the coil in the direction DCBA. The reversal of current through the coil ABCD repeats after each half rotation. As a result, the coil rotates unidirectional. The split rings help to reverse the direction of current in the circuit. These rings are called as commutator.

 

Q3. When does an electric short circuit occur?

Solution: When the resistance of an electric circuit becomes very low, the magnitude of electric current flowing through the circuit becomes very high. This happens when many appliances are connected to a single socket and thus, results short-circuiting. Moreover, when a live wire touches neutral wire directly, the current flowing in the circuit increases suddenly. Thus, a short circuit occurs.

 

Q4. Explain the underlying principle and working of an electric generator by drawing a labelled diagram. What is the function of brushes?

Solution: It is an electrical device which converts mechanical energy into electrical energy.

Principle: When a loop is moved in a magnetic field, an electric current is induced in the coil. An electric generator produces electricity by rotating a coil in a magnetic field.

Working: It consists of a coil ABCD which is mounted on a rotor shaft. The coil’s axis of rotation is placed perpendicular to the magnetic field (N-S). The two other ends of the armature are connected separately to two split rings P and Q. The split rings are then connected to two conducting carbon brushes X and Y. A galvanometer G is connected with external circuit.

If the coil ABCD is rotated clockwise, then the length AB moves upwards while length CD moves downwards. Since the lengths AB and CD are moving in a magnetic field, a current will be induced in both of them due to electromagnetic induction. Length AB is moving upwards and the magnetic field acts from left to right. Hence, according to Fleming’s right hand rule, the direction of induced current will be from A to B. Similarly, the direction of induced current in the length CD will be from C to D.

The direction of current in the coil is ABCD. Thus, the galvanometer shows a deflection in a particular direction. After half a rotation, length AB starts moving down whereas length CD starts moving upward. The direction of the induced current in the coil gets reversed as DCBA. As the direction of current gets reversed after each half rotation, the produced current is called an alternating current.

In the case of DC generator, instead of slip rings, two split rings are used. In this arrangement, brush X always remains in contact with the length of the coil that is moving up whereas brush Y always remains in contact with the length that is moving down. The split rings P and Q act as a commutator.

The direction of current induced in the coil will be ABCD for the first rotation and DCBA in the second half of the rotation. Hence, a unidirectional current is produced in a DC generator.

 

Q5. State the rule to determine the direction of a (i) magnetic field produced around a straight conductor carrying current, (ii) force experienced by a current carrying straight conductor placed in a magnetic field which is perpendicular to it, and (iii) current induced in a coil due to its rotation in a magnetic field.

Solution:

(i) Maxwell’s right hand thumb rule is used to find the direction of magnetic field produced around a straight conductor carrying current.

(ii) Fleming’s left hand rule is used to find the direction of force experienced by a current carrying straight conductor placed in a magnetic field which is perpendicular to it

(iii) Fleming’s right hand rule is used to find the direction of current induced in a coil due to its rotation in a magnetic field.

 

Q6. Two circular coils A and B are placed closed to each other. If the current in the coil A is changed, will some current be induced in the coil B? Give reason.

Solution: On changing the magnitude of electric current in coil A, the magnetic field linked with it also changes and hence, the magnetic field around coil B also changes. Due to this, an electric current induces in coil B. This effect is called electromagnetic induction.

 

Q7.A coil of insulated copper wire is connected to a galvanometer. What will happen if a bar magnet is (i) pushed into the coil, (ii) withdrawn from inside the coil, (iii) held stationary inside the coil?

Solution: A current is induced in a solenoid when a bar magnet is moved relative to it. This is the principle of electromagnetic induction.

(i)  When a bar magnet is pushed into a coil, a current is induced for a moment. Therefore, the needle of the galvanometer deflects for a short time in a particular direction.

(ii)  When the bar magnet is moved away from the coil, a current is again induced for a moment in opposite direction. Thus, the needle of the galvanometer deflects for a short time in the opposite direction.

(iii)  When a bar magnet remains stationary inside the coil, no current will be induced in the coil. Therefore, galvanometer will show no deflection.

 

Q8.Name some devices in which electric motors are used.

Solution:

The devices in which electric motors are used are washing machines, water pumps, electric fans and electric mixers.

 

Q9. Imagine that you are sitting in a chamber with your back to one wall. An electron beam, moving horizontally from back wall towards the front wall, is deflected by a strong magnetic field to your right side. What is the direction of magnetic field?

Solution:

The direction of magnetic field can be found with the help of Fleming’s left hand rule. The direction of magnetic field inside the chamber would be perpendicular to the direction of current and direction of force and it would be either upward or downward. As the negatively charged electrons are moving from back wall to the front wall hence, the direction of current would be from the front wall to the back wall. The direction of magnetic force is rightward. Therefore, according to Fleming’s left hand rule, the direction of magnetic field inside the chamber would be downward.

 

Q10.The phenomenon of electromagnetic induction is

(a) the process of charging a body.

(b) the process of generating magnetic field due to a current passing through a coil.

(c) producing induced current in a coil due to relative motion between a magnet and the coil.

(d) the process of rotating a coil of an electric motor.

Solution:

The correct option is (c).

Explanation: A current is induced in the coil when a coil and a magnet are moved relative to each other. This phenomenon is called electromagnetic induction.

 

Q11.When is the force experienced by a current–carrying conductor placed in a magnetic field largest?

Solution: When the direction of electric current is perpendicular to the direction of the magnetic field, the force experienced by a current-carrying conductor is maximum.

 

Q12. How does a solenoid behave like a magnet? Can you determine the north and south poles of a current–carrying solenoid with the help of a bar magnet? Explain.

Solution: 

Solenoid: It is a long coil of circular loops of insulated copper wire. When electric current is passed through it, the magnetic field lines are produced around it. The magnetic field produced by a solenoid is similar to the magnetic field of a bar magnet.

When the north pole of a bar magnet is brought near the end connected to the negative terminal of the battery, the solenoid repels the bar magnet. Since like poles repel each other, the end connected to the negative terminal of the battery behaves like the north pole of the solenoid and the other end behaves like a south pole. Therefore, one end of the solenoid behaves as a north pole and the other end behaves as a south pole.

 

Q13.List two methods of producing magnetic fields.

Solution: Two methods for producing magnetic field are as follows:

(a) By using permanent magnets.

(b) By using a current carrying conductor.

 

Q14. State whether the following statements are true or false.

(a) An electric motor converts mechanical energy into electrical energy.

(b) An electric generator works on the principle of electromagnetic induction.

(c) The field at the centre of a long circular coil carrying current will be parallel straight lines.

(d) A wire with a green insulation is usually the live wire of an electric supply.

Solution:

(a) False

Explanation: An electric motor converts electrical energy into mechanical energy.

(b) True

Explanation: An electric generator produces electricity by rotating a coil in presence of a magnetic field. It works on the principle of electromagnetic induction.

(c) True

Explanation: A long circular coil behaves like a long solenoid. The magnetic field lines inside the solenoid are parallel to each other.

(d) False

Explanation: Earth wire has green insulation colour while live wire has red insulation cover.

 

Q15.At the time of short circuit, the current in the circuit

(a) reduces substantially.

(b) does not change.

(c) increases heavily.

(d) vary continuously.

Solution:The correct option is (c).

Explanation: In the case of short-circuit, the resistance of the circuit becomes zero. Hence, the magnitude of the current flowing through the circuit increases quickly.

 

Q16. The essential difference between an AC generator and a DC generator is that

(a) AC generator has an electromagnet while a DC generator has permanent magnet.

(b) DC generator will generate a higher voltage.

(c) AC generator will generate a higher voltage.

(d) AC generator has slip rings while the DC generator has a commutator.

Solution:

The correct option is (d).

Explanation: The main difference between AC generator and DC generator is that an AC generator has two rings known as slip rings while a DC generator has two half rings known as commutator.

 

Q17 The device used for producing electric current is called a

(a) generator.

(b) galvanometer.

(c) ammeter.

(d) motor.

Solution:

The correct option is (a).

Explanation: Electric current is generated by an electric generator. An electric generator converts mechanical energy into electric energy.

 

Q18. What is the function of an earth wire? Why is it necessary to earth metallic appliances?

Solution:

An earth wire joins a metallic body of an electric appliance to the earth so that any leakage of electric current is transferred to the ground. This avoids any electric shock to the user. Thus, earthing of the electrical appliances is very important

More Resources of NCERT Solutions for Class 10 Science

NCERT Solutions for Class 10 Science Chapter 12 – FAQs

Q1. What is the difference between Fleming's Left-Hand Rule and Fleming's Right-Hand Rule?

Fleming's Left-Hand Rule is used to find the direction of force on a current-carrying conductor placed in a magnetic field (used in electric motors). Hold your left hand with the thumb, forefinger, and middle finger perpendicular to each other—the forefinger points in the direction of the magnetic field (N to S), the middle finger points in the direction of current, and the thumb shows the direction of force or motion. Fleming's Right-Hand Rule is used to find the direction of induced current in electromagnetic induction (used in generators). Using your right hand in the same position, the thumb shows the direction of motion of the conductor, the forefinger shows the magnetic field direction, and the middle finger indicates the direction of induced current.

Q2. What is electromagnetic induction and how does it work in generators?

Electromagnetic induction is the phenomenon of producing an electric current in a conductor by changing the magnetic field around it. This was discovered by Michael Faraday. When a conductor (like a coil) moves in a magnetic field or when the magnetic field around a stationary conductor changes, an electric current is induced in the conductor. In an AC generator, a coil rotates between the poles of a magnet, continuously changing the magnetic field through it, which induces an alternating current. This principle converts mechanical energy into electrical energy and is the basis for power generation in most power plants.

Q3. How does an electric motor work and what is its principle?

An electric motor converts electrical energy into mechanical energy based on the principle that a current-carrying conductor placed in a magnetic field experiences a force. The motor consists of a rectangular coil (armature) placed between the poles of a magnet, connected to a battery through a split-ring commutator. When current flows through the coil, it experiences forces on opposite sides in opposite directions (using Fleming's Left-Hand Rule), creating a torque that rotates the coil. The split-ring commutator reverses the current direction every half rotation, ensuring continuous rotation in the same direction. Electric motors are used in fans, washing machines, mixers, and numerous other household appliances.

Q.1 A piece of wire of resistance R is cut into five equal parts. These parts are then connected in parallel. If the equivalent resistance of this combination is R’, then the ratio

R/R

is

Ans-

(a) 125 (b) 15 (c) 5 (d) 25

The correct option is (d).

The resistance of a piece of wire is R and it is proportionalto the length of wire. As the wire is cut into five equal parts hence, resistance of each part = R5Let the equivalent resistance of these piece of wire inparallel is R’ then,1R=5R+5R+5R+5R+5R=25Ror, RR = 25

Q.2 Which of the following terms does not represent electrical power in a circuit?

(a) I2R
(b) IR2
(c) VI

Ans-

(d)V2R Electrical power is given by, P= VI (1) According to ohm’s law, V = IR (2) Where, V = potential difference I = current R = resistance P = VI From equation (1), P = (IR)×I P = I 2 R From equation (2), I = V R P = V 2 R Hence, P = VI = I 2 R = V 2 R Thus, IR 2 does not represent electrical power. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeaabaWaaqaafaaakqaabeqaaiaabweacaqGSbGaaeyzaiaabogacaqG0bGaaeOCaiaabMgacaqGJbGaaeyyaiaabYgacaqGGaGaaeiCaiaab+gacaqG3bGaaeyzaiaabkhacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeOyaiaabMhacaqGSaaabaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGqbGaaeypaiaabccacaqGwbGaaeysaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaab6cacaqGUaGaaeOlaiaabccacaqGOaGaaeymaiaabMcaaeaacaqGbbGaae4yaiaabogacaqGVbGaaeOCaiaabsgacaqGPbGaaeOBaiaabEgacaqGGaGaaeiDaiaab+gacaqGGaGaae4BaiaabIgacaqGTbGaae4jaiaabohacaqGGaGaaeiBaiaabggacaqG3bGaaeilaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGwbGaaeiiaiaab2dacaqGGaGaaeysaiaabkfacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaab6cacaqGUaGaaeOlaiaabccacaqGOaGaaeOmaiaabMcaaeaacaqGxbGaaeiAaiaabwgacaqGYbGaaeyzaiaabYcacaqGGaGaaeOvaiaabccacaqG9aGaaeiiaiaabchacaqGVbGaaeiDaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiBaiaabccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabogacaqGLbaabaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeysaiaabccacaqG9aGaaeiiaiaabogacaqG1bGaaeOCaiaabkhacaqGLbGaaeOBaiaabshacaqGGaaabaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeOuaiaabccacaqG9aGaaeiiaiaabkhacaqGLbGaae4CaiaabMgacaqGZbGaaeiDaiaabggacaqGUbGaae4yaiaabwgaaeaacqGH0icxcaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiuaiaabccacaqG9aGaaeiiaiaabAfacaqGjbaabaGaaeOraiaabkhacaqGVbGaaeyBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGOaGaaeymaiaabMcacaqGSaGaaeiiaiaabcfacaqGGaGaaeypaiaabccacaqGOaGaaeysaiaabkfacaqGPaGaae41aiaabMeaaeaacqGH0icxcaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiuaiaabccacaqG9aGaaeiiaiaabMeadaahaaWcbeqaaiaabkdaaaGccaqGsbaabaGaaeOraiaabkhacaqGVbGaaeyBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGOaGaaeOmaiaabMcacaqGSaaabaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabMeacaqGGaGaaeypaiaabccadaWcaaqaaiaabAfaaeaacaqGsbaaaaqaaiabgsJiCjaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGqbGaaeiiaiaab2dadaWcaaqaaiaabAfadaahaaWcbeqaaiaabkdaaaaakeaacaqGsbaaaiaabccaaeaacaqGibGaaeyzaiaab6gacaqGJbGaaeyzaiaabYcacaqGGaGaaeiiaiaabccacaqGqbGaaeiiaiaab2dacaqGGaGaaeOvaiaabMeacaqGGaGaaeypaiaabccacaqGjbWaaWbaaSqabeaacaqGYaaaaOGaaeOuaiaabccacaqG9aWaaSaaaeaacaqGwbWaaWbaaSqabeaacaqGYaaaaaGcbaGaaeOuaaaaaeaacaqGubGaaeiAaiaabwhacaqGZbGaaeilaiaabccacaqGjbGaaeOuamaaCaaaleqabaGaaeOmaaaakiaabccacaqGKbGaae4BaiaabwgacaqGZbGaaeiiaiaab6gacaqGVbGaaeiDaiaabccacaqGYbGaaeyzaiaabchacaqGYbGaaeyzaiaabohacaqGLbGaaeOBaiaabshacaqGGaGaaeyzaiaabYgacaqGLbGaae4yaiaabshacaqGYbGaaeyAaiaabogacaqGHbGaaeiBaiaabccacaqGWbGaae4BaiaabEhacaqGLbGaaeOCaiaab6caaaaa@89D0@

Q.3 An electric bulb is rated 220 V and 100 W. When it is operated on 110 V, the power consumed will be

(a) 100 W
(b) 75 W
(c) 50 W
(d) 25 W

Ans-

Given, V1 = 220 V, V2=110 V P1= 100 WOn using the relation, P1 = V12Ror, R = V12P1 = (220 V)2(100 W)=484 ΩIf the bulb is operated on 110 V, then the energyconsumed, P2=V22R= (110 V)2484Ω= 25 WTherefore, the power consumed will be 25 W.

Q.4 Two conducting wires of the same material and of equal lengths and equal diameters are first connected in series and then parallel in a circuit across the same potential difference. The ratio of heat produced in series and parallel combinations would be –

(a) 1:2
(b) 2:1
(c) 1:4
(d) 4:1

Ans-

The correct option is (c).Suppose, R = resistance of each wire The equivalent resistance in series Rs = R+R = 2RIf V is the applied potential difference, then it is thevoltage across the equivalent resistance.V = Is×2R (Is= current in series combination) Is = V2RThe heat dissipated in time t is,Hs= Is2×2R×t=(V2R)2×2R×t Hs=V2t2R ... (i)The equivalent resistance of the parallel connection isRp=11R+1R=R2V is the applied potential difference across Rp. V=Ip×R2

Q.5 How is a voltmeter connected in the circuit to measure the potential difference between two points?

Ans-

A voltmeter need to be connected in parallel in a circuit to measure the potential difference between two points.

Q.6 A copper wire has diameter 0.5 mm and resistivity of 1.6 × 10−8 Ωm. What will be the length of this wire to make its resistance 10 Ω? How much does the resistance change if the diameter is doubled?

Ans-

Given, ρ=1.6× 10 8 Ωm A = π r 2 r= 0.5 2 mm= 0.0005 2 m R = 10 Ω Hence, length of the wire l = RA ρ = 10×3.14 ( 0.0005 2 ) 2 1.6× 10 8 =122.72 m If the diameter of the wire is doubled then, new diameter = 2×0.5 mm =1 mm =0.001m Hence, Resistance R’ =ρ l A = 1.6× 10 8 ×122.72 π× ( 1 2 × 10 3 ) 2 = 2.5 ΩMathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeaabaWaaqaafaaakqaabeqaaiaabEeacaqGPbGaaeODaiaabwgacaqGUbGaaeilaiaabccacaqGGaGaaeiiaiabeg8aYjabg2da9iaaigdacaGGUaGaaGOnaiabgEna0kaaigdacaaIWaWaaWbaaSqabeaacqGHsislcaaI4aaaaOGaaeiiaiabfM6axjaab2gaaeaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGbbGaaeiiaiaab2dacaqGGaGaeqiWdaNaaeOCamaaCaaaleqabaGaaeOmaaaaaOqaaiaadkhacqGH9aqpdaWcaaqaaiaaicdacaGGUaGaaGynaaqaaiaaikdaaaGaamyBaiaad2gacqGH9aqpdaWcaaqaaiaaicdacaGGUaGaaGimaiaaicdacaaIWaGaaGynaaqaaiaaikdaaaGaamyBaiaac6caaeaacaqGGaGaaeOuaiaabccacaqG9aGaaeiiaiaabgdacaqGWaGaaeiiaiabfM6axbqaaiaadIeacaWGLbGaamOBaiaadogacaWGLbGaaiilaiaabccacaqGSbGaaeyzaiaab6gacaqGNbGaaeiDaiaabIgacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEhacaqGPbGaaeOCaiaabwgacaqGGaaabaGaaeiBaiaabccacaqG9aGaaeiiamaalaaabaGaamOuaiaadgeaaeaacqaHbpGCaaGaeyypa0ZaaSaaaeaacaaIXaGaaGimaiabgEna0kaaiodacaGGUaGaaGymaiaaisdadaqadaqaamaalaaabaGaaGimaiaac6cacaaIWaGaaGimaiaaicdacaaI1aaabaGaaGOmaaaaaiaawIcacaGLPaaadaahaaWcbeqaaiaaikdaaaaakeaacaaIXaGaaiOlaiaaiAdacqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGioaaaaaaGccqGH9aqpcaaIXaGaaGOmaiaaikdacaGGUaGaaG4naiaaikdacaqGGaGaaeyBaaqaaiaabMeacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGKbGaaeyAaiaabggacaqGTbGaaeyzaiaabshacaqGLbGaaeOCaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4DaiaabMgacaqGYbGaaeyzaiaabccacaqGPbGaae4CaiaabccacaqGKbGaae4BaiaabwhacaqGIbGaaeiBaiaabwgacaqGKbGaaeiiaiaabshacaqGObGaaeyzaiaab6gacaqGSaGaaeiiaiaab6gacaqGLbGaae4DaiaabccacaqGKbGaaeyAaiaabggacaqGTbGaaeyzaiaabshacaqGLbGaaeOCaiaabccaaeaacaqGGaGaaeypaiaabccacaqGYaGaey41aqRaaeimaiaab6cacaqG1aGaaeiiaiaab2gacaqGTbGaaeiiaiaab2dacaqGXaGaaeiiaiaab2gacaqGTbGaaeiiaiaab2dacaqGWaGaaeOlaiaabcdacaqGWaGaaeymaiaab2gaaeaacaqGibGaaeyzaiaab6gacaqGJbGaaeyzaiaabYcacaqGGaGaaeiiaiaabkfacaqGLbGaae4CaiaabMgacaqGZbGaaeiDaiaabggacaqGUbGaae4yaiaabwgacaqGGaGaaeOuaiaabEcacaqGGaGaaeypaiabeg8aYnaalaaabaGaamiBaaqaaiaadgeaaaGaeyypa0ZaaSaaaeaacaaIXaGaaiOlaiaaiAdacqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaGioaaaakiabgEna0kaaigdacaaIYaGaaGOmaiaac6cacaaI3aGaaGOmaaqaaiabec8aWjabgEna0oaabmaabaWaaSaaaeaacaaIXaaabaGaaGOmaaaacqGHxdaTcaaIXaGaaGimamaaCaaaleqabaGaeyOeI0IaaG4maaaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOmaaaaaaaakeaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeypaiaabccacaqGYaGaaeOlaiaabwdacaqGGaGaeuyQdCLaaiOlaaaaaa@4142@

Q.7 The value of current (I) flowing in a given resistor for the corresponding values of potential difference (V) across the resistor are given below-

I (amperes) 0.5 1.0 2.0 3.0 4.0
V (volts) 1.6 3.4 6.7 10.2

Plot a graph between V and I and calculate the resistance of that resistor.

When the graph is plotted between voltage and current then, it is called V-I characteristics. Here, the voltage is plotted on X axis and current is plotted on Y axis.

The slop of the line gives the value of resistance (R)as,Slope, =1R=BCAC=26.8R= 6.82=3.4 Ω .

Q.8 When a 12 V battery is connected across an unknown resistor, there is a current of 2.5 mA in the circuit. Find the value of the resistance of the resistor.

According to ohm’s law, V = IR or, R = VIHere, potential difference, V = 12 volts i = 2.5 mA =2.5 ×10-3 A R = 122.5×10-3=4.8 ×10-3Ω.

Q.9 A battery of 9 V is connected in series with resistors of 0.2 Ω, 0.3 Ω, 0.4 Ω, 0.5 Ω and 12 Ω, respectively. How much current would flow through the 12 resistors?

Ans-

The current would be same throughout the series circuit.Equivalent resistance of the circuit,Req=(0.2+0.3+0.4+0.5+12) Ω=13.4 Ω V= 9 VBy using ohm’s law, V =IRor, I =VR I = 913.4Ω = 0.671 ATherefore, the current that would flow through12 Ω resistor is 0.671 A.

Q.10 How many 176 resistors (in parallel) are required to carry 5 A on a 220 V line?

Given, V = 220 volt I = 5 A Equivalent resistance (R) of the combination is given as 1 R = x× 1 176 or, R = 176 x From ohm’s law, V I = 176 x or, x = 176×5 220 =4 Hence, 4 resistors of 176 Ω are required to draw the given amount of current. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeaabaWaaqaafaaakqaabeqaaiaadEeacaWGPbGaamODaiaadwgacaWGUbGaaiilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabAfacaqGGaGaaeypaiaabccacaqGYaGaaeOmaiaabcdacaqGGaGaaeODaiaab+gacaqGSbGaaeiDaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGjbGaaeiiaiaab2dacaqGGaGaaeynaiaabccacaqGbbaabaGaaeyraiaabghacaqG1bGaaeyAaiaabAhacaqGHbGaaeiBaiaabwgacaqGUbGaaeiDaiaabccacaqGYbGaaeyzaiaabohacaqGPbGaae4CaiaabshacaqGHbGaaeOBaiaabogacaqGLbGaaeiiaiaabIcacaqGsbGaaeykaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4yaiaab+gacaqGTbGaaeOyaiaabMgacaqGUbGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaaeyAaiaabohaaeaacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGHbGaae4CaiaabccaaeaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiamaalaaabaGaaGymaaqaaiaadkfaaaGaaeypaiaabccacaqG4bGaey41aq7aaSaaaeaacaaIXaaabaGaaGymaiaaiEdacaaI2aaaaaqaaiaab+gacaqGYbGaaeilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGsbGaaeiiaiaab2dacaqGGaWaaSaaaeaacaaIXaGaaG4naiaaiAdaaeaacaWG4baaaaqaaiaabAeacaqGYbGaae4Baiaab2gacaqGGaGaae4BaiaabIgacaqGTbGaae4jaiaabohacaqGGaGaaeiBaiaabggacaqG3bGaaeilaaqaaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiamaalaaabaGaamOvaaqaaiaadMeaaaGaeyypa0ZaaSaaaeaacaaIXaGaaG4naiaaiAdaaeaacaWG4baaaaqaaiaad+gacaWGYbGaaiilaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG4bGaaeiiaiaab2dacaqGGaWaaSaaaeaacaaIXaGaaG4naiaaiAdacqGHxdaTcaaI1aaabaGaaGOmaiaaikdacaaIWaaaaiabg2da9iaaisdaaeaacaWGibGaamyzaiaad6gacaWGJbGaamyzaiaacYcacaqGGaGaaeinaiaabccacaqGYbGaaeyzaiaabohacaqGPbGaae4CaiaabshacaqGVbGaaeOCaiaabohacaqGGaGaae4BaiaabAgacaqGGaGaaeymaiaabEdacaqG2aGaaeiiaiabfM6axjaabccacaqGHbGaaeOCaiaabwgacaqGGaGaaeOCaiaabwgacaqGXbGaaeyDaiaabMgacaqGYbGaaeyzaiaabsgacaqGGaGaaeiDaiaab+gacaqGGaGaaeizaiaabkhacaqGHbGaae4DaiaabccacaqG0bGaaeiAaiaabwgaaeaacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGHbGaaeyBaiaab+gacaqG1bGaaeOBaiaabshacaqGGaGaae4BaiaabAgacaqGGaGaae4yaiaabwhacaqGYbGaaeOCaiaabwgacaqGUbGaaeiDaiaab6cacaqGGaaaaaa@19BD@

Q.11 Show how would you connect three resistors, each of resistance 6 Ω, so that the combination has a resistance of (i) 9 Ω (ii) 4 Ω.

(i)

When two resistors are connected in parallel andthe third one is connected in series with thesetwo then, Two 6 Ω resistors are connected in parallel.Their equivalent resistance (R’) will be 1R= 16Ω+16Ω=26Ω=13Ω or, R’ = 3 ΩThe third 6 Ω resistor is connected in series with 3 Ω.Hence, the equivalent resistance R1 = (6+3) Ω = 9 Ω

(ii)

Two resistors of 6 Ω are in series. Their equivalentresistance will be = (6+6) Ω = 12 ΩThe third 6 Ω resistor is connected in parallel with 12 Ω.Hence, equivalent resistance (R2)1R2=112 Ω+16 Ω=312 Ω=14 Ωor, R2 = 4 Ω

Question

Q.12 Several electric bulbs designed to be used on a 220 V electric supply line, are rated 10 W. How many lamps can be connected in parallel with each other across the two wires of 220 V line if the maximum allowable current is 5 A?

Ans-

Given, V = 220 V i = 5 A P1 = 10 WOn using the relation, P = V2R1or, R1 = V2P1 = (220)210= 4840 ΩAs per ohm’s law, V= IR R =VI= 2205=44 ΩResistance of each electric bulb, R1=4840 Ω 1R=1R1+1R1+.+upto x timesor, x = R1R=484044=110Thus, 110 electric bulbs are connected in parallel.

Q.13 A hot plate of an electric oven connected to a 220 V line has two resistance coils A and B, each of 24 resistances which may be used separately, in series or in parallel. What are the currents in the three cases?

Ans-

Given, Supply voltage, V = 220 V Resistance, R = 24 Ω (i) When coils are used separately: By using the relation, V = I1R1 Where, I1 = current flowing through the coil I1= VR1 = 22024 = 9.166 A.(ii) When coils are connceted in series: total resistance of the two coils R2 = (24+24) Ω = 48 Ω By using the relation, V = I2R2 I2= VR2 = 22048 = 4.58 A.(iii) When coils are connceted in parallel: Total resistance (R3) would be 1R3=124+124=224or, R3=12Ω On using the relation V = I3R3 I3= VR3= 22012=18.33 A.

Q.14 Compare the power used in the 2 Ω in each of the following circuits:
(i) a 6 V battery in series with 1 Ω and 2 Ω resistors, and
(ii) a 4 V battery in parallel with 12 Ω and 2 Ω resistors.

Ans-

(i) Given, Potential difference, V = 6 V R1 = 1 Ω, R2 = 2 Ω Equivalent resistance in series, R = R1+ R2 = (1+2) Ω = 3 Ω On using the relation, V = IR (I = current through the circuit) I = VR = 63 = 2 A Now, power in the circuit P = I2R = (2)2×2=8 W.(ii) Given, potential difference, V = 4 V R1=12 Ω, R2=2 Ω The voltage across each component of a parallel circuit remains the same. Hence, voltage across 2 Ω resistor will be 4 V. Power consumed by 2 Ω is given by P = V2R=422= 8 W.

Q.15 Two lamps, one rated 100 W and 220 V, and the other 60 W at 220 W, are connected in parallel to electric mains supply. What current is drawn from the line if the supply voltage is 220 V?

Ans-

The potential difference across each bulb will be 220V because no division of voltage occurs in a parallelcircuit.Current drawn by the bulb of rating 100 W is given by, P = VI1 I1 = PV=100W220VSimilarly, current drawn by the bulb of rating 60 W isgiven by, I2 = PV=60W220V Current drawn from the line = 100W220V+60W220V=0.727 A

Q.16 Which uses more energy, a 250 W TV set in 1 hr, or a 1200 W toaster in 10 minutes?

Ans-

Energy consumed by a TV set of power 250 W in 1 his given by the expression H = Pt = 250 W×3600 s = 9×105 JSimilarly, energy consumed by a toaster of power 1200 Win 10 minutes = 1200×600 = 7.2×105 JHence, the energy consumed by a 250 W TV in 1 h is more than the energy consumed by a toaster of power 1200 W in 10 minutes.

Q.17 An electric heater of resistance 8 Ω  draws 15 A from the service mains 2 hours. Calculate the rate at which heat is developed in the heater.

Ans-

Given, R = 8 Ω I = 15 A Rate of heat produced can be expressed as power, P = I2ROn putting the values, P = (15 A)2×8=1800 W or 1800 Js.

Q.18 Explain the following.

(a) Why is the tungsten used almost exclusively for filament of electric lamps?
(b) Why are the conductors of electric heating devices, such as bread-toasters and electric irons, made of an alloy rather than a pure metal?
(c) Why is the series arrangement not used for domestic circuits?
(d) How does the resistance of a wire vary with its area of cross-section?
(e) Why are copper and aluminium wires usually employed for electricity transmission?

Ans-

(a) Due to high melting point and high resistivity of tungsten, it does not burn at a high temperature. As the electric lamps glow at very high temperatures hence, the tungsten is used as heating element of electric bulbs.
(b) Bread toasters and electric irons are made of alloy because resistivity of an alloy is more than that of pure metals. Due to high resistivity, they produce large amount of heat.
(c) In a series circuit, there is a voltage distribution. Each element of a series circuit receives a small voltage for a large supply voltage. Thus, the amount of current decreases and the device becomes hot. Therefore, series arrangement is not used in domestic circuits.
(d) Resistance (R) of a wire is inversely proportional to its area of cross-section (A).
(e) The wires made of copper or aluminium have low resistivity and they are good conductors of electricity. Therefore, they are frequently used for electricity transmission.

Please register to view this section