NCERT Solutions for Class 11 Maths Chapter 2 Relations and Functions (Ex 2.1)
Home » NCERT Solutions » NCERT Solutions for Class 11 Maths Chapter 2 Relations and Functions (Ex 2.1)

CBSE Important Questions›

CBSE Previous Year Question Papers›
 CBSE Previous Year Question Papers
 CBSE Previous Year Question Papers Class 12
 CBSE Previous Year Question Papers Class 10

CBSE Revision Notes›

CBSE Syllabus›

CBSE Extra Questions›

CBSE Sample Papers›
 CBSE Sample Papers
 CBSE Sample Question Papers For Class 5
 CBSE Sample Question Papers For Class 4
 CBSE Sample Question Papers For Class 3
 CBSE Sample Question Papers For Class 2
 CBSE Sample Question Papers For Class 1
 CBSE Sample Question Papers For Class 12
 CBSE Sample Question Papers For Class 11
 CBSE Sample Question Papers For Class 10
 CBSE Sample Question Papers For Class 9
 CBSE Sample Question Papers For Class 8
 CBSE Sample Question Papers For Class 7
 CBSE Sample Question Papers For Class 6

ISC & ICSE Syllabus›

ICSE Question Paper›
 ICSE Question Paper
 ISC Class 12 Question Paper
 ICSE Class 10 Question Paper

ICSE Sample Question Papers›
 ICSE Sample Question Papers
 ISC Sample Question Papers For Class 12
 ISC Sample Question Papers For Class 11
 ICSE Sample Question Papers For Class 10
 ICSE Sample Question Papers For Class 9
 ICSE Sample Question Papers For Class 8
 ICSE Sample Question Papers For Class 7
 ICSE Sample Question Papers For Class 6

ICSE Revision Notes›
 ICSE Revision Notes
 ICSE Class 9 Revision Notes
 ICSE Class 10 Revision Notes

ICSE Important Questions›

Maharashtra board›

RajasthanBoard›
 RajasthanBoard

Andhrapradesh Board›
 Andhrapradesh Board
 AP Board Sample Question Paper
 AP Board syllabus
 AP Board Previous Year Question Paper

Telangana Board›

Tamilnadu Board›

NCERT Solutions Class 12›
 NCERT Solutions Class 12
 NCERT Solutions Class 12 Economics
 NCERT Solutions Class 12 English
 NCERT Solutions Class 12 Hindi
 NCERT Solutions Class 12 Maths
 NCERT Solutions Class 12 Physics
 NCERT Solutions Class 12 Accountancy
 NCERT Solutions Class 12 Biology
 NCERT Solutions Class 12 Chemistry
 NCERT Solutions Class 12 Commerce

NCERT Solutions Class 10›

NCERT Solutions Class 11›
 NCERT Solutions Class 11
 NCERT Solutions Class 11 Statistics
 NCERT Solutions Class 11 Accountancy
 NCERT Solutions Class 11 Biology
 NCERT Solutions Class 11 Chemistry
 NCERT Solutions Class 11 Commerce
 NCERT Solutions Class 11 English
 NCERT Solutions Class 11 Hindi
 NCERT Solutions Class 11 Maths
 NCERT Solutions Class 11 Physics

NCERT Solutions Class 9›

NCERT Solutions Class 8›

NCERT Solutions Class 7›

NCERT Solutions Class 6›

NCERT Solutions Class 5›
 NCERT Solutions Class 5
 NCERT Solutions Class 5 EVS
 NCERT Solutions Class 5 English
 NCERT Solutions Class 5 Maths

NCERT Solutions Class 4›

NCERT Solutions Class 3›

NCERT Solutions Class 2›
 NCERT Solutions Class 2
 NCERT Solutions Class 2 Hindi
 NCERT Solutions Class 2 Maths
 NCERT Solutions Class 2 English

NCERT Solutions Class 1›
 NCERT Solutions Class 1
 NCERT Solutions Class 1 English
 NCERT Solutions Class 1 Hindi
 NCERT Solutions Class 1 Maths

JEE Main Question Papers›

JEE Main Syllabus›
 JEE Main Syllabus
 JEE Main Chemistry Syllabus
 JEE Main Maths Syllabus
 JEE Main Physics Syllabus

JEE Main Questions›
 JEE Main Questions
 JEE Main Maths Questions
 JEE Main Physics Questions
 JEE Main Chemistry Questions

JEE Main Mock Test›
 JEE Main Mock Test

JEE Main Revision Notes›
 JEE Main Revision Notes

JEE Main Sample Papers›
 JEE Main Sample Papers

JEE Advanced Question Papers›

JEE Advanced Syllabus›
 JEE Advanced Syllabus

JEE Advanced Mock Test›
 JEE Advanced Mock Test

JEE Advanced Questions›
 JEE Advanced Questions
 JEE Advanced Chemistry Questions
 JEE Advanced Maths Questions
 JEE Advanced Physics Questions

JEE Advanced Sample Papers›
 JEE Advanced Sample Papers

NEET Eligibility Criteria›
 NEET Eligibility Criteria

NEET Question Papers›

NEET Sample Papers›
 NEET Sample Papers

NEET Syllabus›

NEET Mock Test›
 NEET Mock Test

NCERT Books Class 9›
 NCERT Books Class 9

NCERT Books Class 8›
 NCERT Books Class 8

NCERT Books Class 7›
 NCERT Books Class 7

NCERT Books Class 6›
 NCERT Books Class 6

NCERT Books Class 5›
 NCERT Books Class 5

NCERT Books Class 4›
 NCERT Books Class 4

NCERT Books Class 3›
 NCERT Books Class 3

NCERT Books Class 2›
 NCERT Books Class 2

NCERT Books Class 1›
 NCERT Books Class 1

NCERT Books Class 12›
 NCERT Books Class 12

NCERT Books Class 11›
 NCERT Books Class 11

NCERT Books Class 10›
 NCERT Books Class 10

Chemistry Full Forms›
 Chemistry Full Forms

Biology Full Forms›
 Biology Full Forms

Physics Full Forms›
 Physics Full Forms

Educational Full Form›
 Educational Full Form

Examination Full Forms›
 Examination Full Forms

Algebra Formulas›
 Algebra Formulas

Chemistry Formulas›
 Chemistry Formulas

Geometry Formulas›
 Geometry Formulas

Math Formulas›
 Math Formulas

Physics Formulas›
 Physics Formulas

Trigonometry Formulas›
 Trigonometry Formulas

CUET Admit Card›
 CUET Admit Card

CUET Application Form›
 CUET Application Form

CUET Counselling›
 CUET Counselling

CUET Cutoff›
 CUET Cutoff

CUET Previous Year Question Papers›
 CUET Previous Year Question Papers

CUET Results›
 CUET Results

CUET Sample Papers›
 CUET Sample Papers

CUET Syllabus›
 CUET Syllabus

CUET Eligibility Criteria›
 CUET Eligibility Criteria

CUET Exam Centers›
 CUET Exam Centers

CUET Exam Dates›
 CUET Exam Dates

CUET Exam Pattern›
 CUET Exam Pattern
One of the most important and difficult subjects for students in Class 11 is mathematics. In addition to solid conceptual knowledge, Mathematics also necessitates a lot of problemsolving practice. Practising lots of questions is the key to getting good grades in Mathematics in the annual examinations. The NCERT mathematics textbook covers Relations and Functions in Chapter 11. As questions from this chapter are frequently asked in the exams, it is an important chapter for students to study thoroughly. Compared to the other chapters in the book, this one is a little bit shorter. It contains three exercises in total. However, the concepts it contains are extremely crucial. This chapter teaches students the concept of functions, which will be very helpful to them in the future. For a solid understanding of the topics, it is crucial that students complete the problems in this chapter. Class 11 Maths Chapter 2 Exercise 2.1, deals with the Cartesian Products of Sets. Students must carry out a series of actions in order to find the Cartesian products and address the problems in the exercises. Extramarks offers NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1, to assist students in this regard.
Since they are written in straightforward language that all students can comprehend, the NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1 are helpful for students while they are preparing for their annual exams. The NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1, have been produced in a stepbystep manner to help students secure full marks in their exams. In order to prevent students from being compelled to look elsewhere for the topics covered by the curriculum, the NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1 have been created in accordance with the most recent syllabus. Every CBSE guideline is followed in the NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1. All of the problems in the chapter’s exercises are addressed in the NCERT Solutions Class 11 Maths Chapter 2 Exercise 2.1, which is also fully errorfree. The NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1, can help students prepare for exams by helping them answer questions like these fast and correctly. Since they are prepared in an easytounderstand manner, the NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1 offered by Extramarks will suffice to help students tackle NCERT questions. Using the NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1 can help students apply the concepts from Maths Class 11 Chapter 2 Exercise 2.1 more accurately and easily.
Highly skilled teachers who have taken into mind the comprehension capacity of Class 12 students have prepared the precise and errorfree NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1. The exercises’ problems have been divided into smaller, more manageable steps to facilitate composing answers. Examiners frequently stress the importance of providing detailed answers. Students should utilise the stepwise solutions in the NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1, to get ideal scores on their exams.
NCERT Solutions for Class 11 Maths Chapter 2 Relations and Functions (Ex 2.1) Exercise 2.1
Students might not always have access to the NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1. Although having access to the internet is necessary, it may not always be possible. The NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1 in the PDF version should be readily available to students who desire to keep learning. Each and every student’s educational demands are fully met by Extramarks. The Extramarks’ website and mobile app both offer the NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1, in PDF format. Additionally, it is simple for students to download the PDF version and answer the questions whenever they like. Combining the benefits of live classrooms with NCERT solutions in one comprehensive learning package provides students with a seamless learning experience.
NCERT Solutions for Class 11 Maths Chapter 2 Relations and Functions Exercise 2.1
Extramarks provide a complete response to a student’s educational needs. Despite the fact that NCERT textbooks are a great source of study material, students still struggle to locate reliable NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1. Although the NCERT textbook contains the answers to the questions, it does not contain their indepth explanations. Students must comprehend the steps taken to arrive at the answer while answering the questions. Writing every step in the exam is extremely crucial if students want to get full marks.
NCERT Solutions like the NCERT Solutions Class 12, NCERT Solutions Class 11, NCERT Solutions Class 6, NCERT Solutions Class 7, NCERT Solutions Class 8, NCERT Solutions Class 9 and NCERT Solutions Class 10 are also available at Extramarks.
For students in primary classes in CBSEaffiliated schools, Extramarks provides NCERT Solutions Class 5, NCERT Solutions Class 4, NCERT Solutions Class 3, NCERT Solutions Class 2 and NCERT Solutions Class 1.
Q.1
$\text{If\hspace{0.33em}}\left(\frac{\text{x}}{\text{3}}\text{+1, y}\frac{\text{2}}{\text{3}}\right)\text{=}\left(\frac{\text{5}}{\text{3}}\text{,}\frac{\text{1}}{\text{3}}\right)\text{, find the values of x and y.}$Ans.
$\begin{array}{l}\mathrm{Given}:\\ \text{\hspace{0.17em}}(\frac{\mathrm{x}}{3}+1,\mathrm{y}\frac{2}{3})=(\frac{5}{3},\frac{1}{3})\\ \mathrm{Comparing}\text{both sides, we get}\\ \frac{\mathrm{x}}{3}+1=\frac{5}{3}\Rightarrow \frac{\mathrm{x}}{3}=\frac{5}{3}1\\ \text{\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}}\frac{\mathrm{x}}{3}=\frac{2}{3}\Rightarrow \mathrm{x}=2\\ \mathrm{and}\text{\hspace{0.17em}\hspace{0.17em}}\mathrm{y}\frac{2}{3}=\frac{1}{3}\Rightarrow \mathrm{y}=\frac{1}{3}+\frac{2}{3}\\ \text{\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}\hspace{0.17em}}\mathrm{y}=\frac{3}{3}=1\\ \mathrm{Thus},\text{x}=2\text{and y}=\text{1.}\end{array}$
Q.2 If the set A has 3 elements and the set B = {3, 4, 5}, then find the number of elements in (A × B).
Ans.
$\begin{array}{l}\mathrm{Number}\text{of elements in set A}=3\\ \text{i}.\text{e}.,\text{\hspace{0.33em}n}\left(\text{A}\right)=3\\ \mathrm{Elements}\text{in set B}=\left\{3,4,5\right\}\\ \Rightarrow \text{\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}n}\left(\text{B}\right)=3\\ \mathrm{So},\text{}\\ \text{Number of elements in A}\times \text{B}=\text{n}\left(\text{A}\right)\times \text{n}\left(\text{B}\right)\\ \text{\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}n}\left(\text{A}\times \text{B}\right)=3\times 3\\ \text{\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}}=9\\ \mathrm{Thus},\text{\hspace{0.33em}number\hspace{0.33em}of\hspace{0.33em}elements\hspace{0.33em}in\hspace{0.33em}A}\times \text{B\hspace{0.33em}is\hspace{0.33em}9.}\end{array}$
Q.3 If G = {7, 8} and H = {5, 4, 2}, find G × H and H × G.
Ans.
$\begin{array}{l}\text{Given:\hspace{0.33em}G}=\left\{\text{7},\text{8}\right\}\text{and H}=\left\{\text{5},\text{4},\text{2}\right\},\text{}\\ \text{\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}G}\times \text{H}=\left\{\left(7,5\right),\left(7,4\right),\left(7,2\right),\left(8,5\right),\left(8,4\right),\left(8,2\right)\right\}\\ \text{\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}\hspace{0.33em}H}\times \text{G}=\left\{\left(5,7\right),\left(5,8\right),\left(4,7\right),\left(4,8\right),\left(2,7\right),\left(2,8\right)\right\}\end{array}$
Q.4 State whether each of the following statements are true or false. If the statement is false, rewrite the given statement correctly.
(i) If P = {m, n} and Q = {n, m}, then P × Q = {(m, n), (n, m)}.
(ii) If A and B are nonempty sets, then A × B is a nonempty set of ordered pairs (x, y) such that x ∈ A and y ∈ B.
(iii) If A = {1, 2}, B = {3, 4}, then A × (B ∩ ∅) = ∅ .
Ans.
(i) False,
Since, P = {m, n} and Q = {n, m}
P × Q = {(m, n), (m, m), (n, n), (n, m)}
(ii) True.
(iii) True.
Q.5 If A = {–1, 1}, find A × A × A.
Ans.
Since, A = {–1, 1}
A × A = {(–1, –1), (–1, 1,), (1,–1), (1, 1)}
A × A × A = {–1, 1} × {(–1, –1), (–1, 1,), (1,–1), (1, 1)}
= {(1,–1, –1), (–1,–1, 1,), (–1,1,–1), (–1,1, 1), (1, –1, –1), (1,–1, 1,), (1, 1,–1), (1, 1, 1)}
Q.6 If A × B = {(a, x),(a , y), (b, x), (b, y)}. Find A and B.
Ans.
Given, A × B = {(a, x),(a , y), (b, x), (b, y)}
Since, Cartesian product A × B of two sets A and B is given by A × B = {(a, b): a ∈ A, b ∈ B}.
Then, A = {a, b}, B = {x, y}.
Q.7 Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that
(i) A × (B ∩ C) = (A × B) ∩ (A × C).
(ii) A × C is a subset of B × D.
Ans.
Given, A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}
(i) B ∩ C = {}
= ∅
A × (B ∩ C)
= A × ∅
= ∅
A × B = {(1, 1), (1, 2),(1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)}
A × C = {(1, 5), (1, 6), (2, 5), (2, 6)}
(A × B) ∩ (A × C)
= ∅
L.H.S.= R.H.S. Hence proved.
(ii) Here,
A × C = {(1, 5), (1, 6), (2, 5), (2, 6)}
B × D = {(1, 5), (1, 6), (1, 7), (1, 8), (2, 5),
(2, 6), (2, 7), (2, 8), (3, 5), (3, 6),
(3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)}
Since,
(A × C) ∩ (B × D) = {(1, 5), (1, 6), (2, 5), (2, 6)}
= (A × C)
So, (A × C) is a subset of (B × D).
Q.8 Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in A × B, find A and B, where x, y and z are distinct elements.
Ans.
Number of elements in set A = 3
Number of elements in set B = 2,
Some elements of A × B are (x, 1), (y, 2), (z, 1).
Since, Cartesian product A × B of two sets A and B is given by A × B = {(a, b): a ∈ A, b ∈ B} So, A = {x, y, z} and B = {1, 2}.
Q.9 The Cartesian product A × A has 9 elements among which are found (–1, 0) and (0, 1).
Find the set A and the remaining elements of A × A.
Ans.
Number of elements in the cartesian product A × A = 9
Some given elements of A × A are (–1, 0) and (0, 1).
Let number of elements in set A, n(A) = 3
and number of elements in set A × A = 9
i.e., n(A × A) = n(A) × n(A)
9 = { n(A)}^{2}
n(A) = 3
So, A = {–1, 0, 1}
Then, A × A = {(–1, –1), (–1, 0), (–1, 1), (0, –1,), (0, 0), (0,1), (1, –1,), (1, 0), (1, 1)}
Remaining elements of A × A are: (–1, –1), (–1, 1), (0, –1,), (0, 0), (1, –1,), (1, 0), (1, 1).
Please register to view this section
FAQs (Frequently Asked Questions)
1. When studying for the board exams, how should students use the NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1?
The chapter’s concepts should be read in detail by students first. After that, they need to go over the textbook’s examples. This will teach them various approaches to resolving the problems in this chapter. After finishing the examples, they should attempt the exercises’ questions. They need to make an effort to solve the problems without using the solutions. When they are finished, they can check their answers by going through the solutions provided by Extramarks. They can fix their errors and learn the procedures outlined in the solutions.
2. Where to find the NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1?
The NCERT Solutions For Class 11 Maths Chapter 2 Exercise 2.1 are available on the Extramarks’ website and mobile application.