Ncert Solutions class 12 maths chapter 1 exercise 1.3

Q.1

Let f: {1,3,4}{1, 2, 5} and g:{1, 2, 5}{1, 3}be givenby f={(1, 2),(3, 5),(4, 1)} and g={(1, 3), (2, 3), (5,1)}.Write down go f.

Ans

The functions f: {1, 3, 4}{1, 2, 5} and g: {1, 2, 5}{1, 3} are defined as f = {(1, 2), (3, 5), (4, 1)} and g = {(1, 3), (2, 3), (5, 1)}.gof(1)=g{f(1)}=g(2)=3[f(1)=2,g(2)=3]gof(3)=g{f(3)}=g(5)=1[f(3)=5,g(5)=1]gof(4)=g{f(4)}=g(1)=3[f(4)=1,g(1)=3]gof={(1, 3), (3,1) ,(4, 3)}

Q.2 Let f, g and h be functions from R to R. Show that

(f + g)oh = foh + goh

(f. g)oh = (foh) . (goh)

Ans

Let ( ( f+g )oh )( x )=( foh )( x )+( goh )( x ) = f{ h( x ) }+g{ h( x ) } = ( foh )( x )+( goh )( x ) = { ( f+g )oh }( x ) = { ( foh )+( goh ) }( x ) xR Hence, ( f+g )oh=( foh )+( goh ). Now, { ( f.g )oh }( x )=( f.g )( h( x ) ) =f( h( x ) ).g( h( x ) ) =( foh )( x ).( goh )( x ) ={ ( foh ).( goh ) }( x ) { ( f.g )oh }( x )={ ( foh ).( goh ) }( x ) xR Hence, ( f.g )oh=( foh ).( goh ) MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8IrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakqaabeqaaiaabYeacaqGLbGaaeiDaiaabccadaqadaqaamaabmaabaGaaeOzaiabgUcaRiaabEgaaiaawIcacaGLPaaacaqGVbGaaeiAaaGaayjkaiaawMcaamaabmaabaGaaeiEaaGaayjkaiaawMcaaiabg2da9maabmaabaGaaeOzaiaab+gacaqGObaacaGLOaGaayzkaaWaaeWaaeaacaqG4baacaGLOaGaayzkaaGaey4kaSYaaeWaaeaacaqGNbGaae4BaiaabIgaaiaawIcacaGLPaaadaqadaqaaiaabIhaaiaawIcacaGLPaaaaeaacaWLjaGaaCzcaiaaxMaacaWLjaGaaGPaVlabg2da9iaabccacaqGMbWaaiWaaeaacaqGObWaaeWaaeaacaqG4baacaGLOaGaayzkaaaacaGL7bGaayzFaaGaey4kaSIaae4zamaacmaabaGaaeiAamaabmaabaGaaeiEaaGaayjkaiaawMcaaaGaay5Eaiaaw2haaaqaaiaaxMaacaWLjaGaaCzcaiaaxMaacaaMc8Uaeyypa0JaaeiiamaabmaabaGaaeOzaiaab+gacaqGObaacaGLOaGaayzkaaWaaeWaaeaacaqG4baacaGLOaGaayzkaaGaey4kaSYaaeWaaeaacaqGNbGaae4BaiaabIgaaiaawIcacaGLPaaadaqadaqaaiaabIhaaiaawIcacaGLPaaaaeaaaeaacaWLjaGaaCzcaiaaxMaacaWLjaGaaGPaVlabg2da9iaabccadaGadaqaamaabmaabaGaaeOzaiabgUcaRiaabEgaaiaawIcacaGLPaaacaqGVbGaaeiAaaGaay5Eaiaaw2haamaabmaabaGaaeiEaaGaayjkaiaawMcaaaqaaiaaxMaacaWLjaGaaCzcaiaaxMaacaaMc8Uaeyypa0JaaeiiamaacmaabaWaaeWaaeaacaqGMbGaae4BaiaabIgaaiaawIcacaGLPaaacqGHRaWkdaqadaqaaiaabEgacaqGVbGaaeiAaaGaayjkaiaawMcaaaGaay5Eaiaaw2haamaabmaabaGaaeiEaaGaayjkaiaawMcaaiaaxMaacqGHaiIicaWG4bGaeyicI4SaamOuaaqaaiaadIeacaWGLbGaamOBaiaadogacaWGLbGaaiilaiaabccacaqGGaGaaeiiaabbaaaaaG+acXwDLbWdbmaabmaabaGaamOzaiabgUcaRiaadEgaaiaawIcacaGLPaaacaWGVbGaamiAaiabg2da9maabmaabaGaaeOzaiaab+gacaqGObaacaGLOaGaayzkaaGaey4kaSYaaeWaaeaacaqGNbGaae4BaiaabIgaaiaawIcacaGLPaaacaGGUaaapaqaaiaad6eacaWGVbGaam4DaiaacYcaaeaacaaMc8UaaGPaVlaaykW7caWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daGadaqaamaabmaabaGaamOzaiaac6cacaWGNbaacaGLOaGaayzkaaGaam4BaiaadIgaaiaawUhacaGL9baadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaqadaqaaiaadAgacaGGUaGaam4zaaGaayjkaiaawMcaamaabmaabaGaamiAamaabmaabaGaamiEaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaaxMaacaWLjaGaaCzcaiaaxMaacqGH9aqpcaWGMbWaaeWaaeaacaWGObWaaeWaaeaacaWG4baacaGLOaGaayzkaaaacaGLOaGaayzkaaGaaiOlaiaadEgadaqadaqaaiaadIgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaacaWLjaGaaCzcaiaaxMaacaWLjaGaeyypa0ZaaeWaaeaacaWGMbGaam4BaiaadIgaaiaawIcacaGLPaaadaqadaqaaiaadIhaaiaawIcacaGLPaaacaGGUaWaaeWaaeaacaWGNbGaam4BaiaadIgaaiaawIcacaGLPaaadaqadaqaaiaadIhaaiaawIcacaGLPaaaaeaacaWLjaGaaCzcaiaaxMaacaWLjaGaeyypa0ZaaiWaaeaadaqadaqaaiaadAgacaWGVbGaamiAaaGaayjkaiaawMcaaiaac6cadaqadaqaaiaadEgacaWGVbGaamiAaaGaayjkaiaawMcaaaGaay5Eaiaaw2haamaabmaabaGaamiEaaGaayjkaiaawMcaaaqaaiabgsJiCjaaykW7caaMc8UaaGPaVlaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaacmaabaWaaeWaaeaacaWGMbGaaiOlaiaadEgaaiaawIcacaGLPaaacaWGVbGaamiAaaGaay5Eaiaaw2haamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maacmaabaWaaeWaaeaacaWGMbGaam4BaiaadIgaaiaawIcacaGLPaaacaGGUaWaaeWaaeaacaWGNbGaam4BaiaadIgaaiaawIcacaGLPaaaaiaawUhacaGL9baadaqadaqaaiaadIhaaiaawIcacaGLPaaacaWLjaGaaCzcaiabgcGiIiaadIhacqGHiiIZcaWGsbaabaGaamisaiaadwgacaWGUbGaam4yaiaadwgacaGGSaGaaGPaVlaaykW7caWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7peWaaeWaaeaacaWGMbGaaiOlaiaaykW7caWGNbaacaGLOaGaayzkaaGaam4BaiaadIgacqGH9aqpdaqadaqaaiaadAgacaWGVbGaamiAaaGaayjkaiaawMcaaiaaykW7caaMc8UaaiOlaiaaykW7daqadaqaaiaadEgacaWGVbGaamiAaaGaayjkaiaawMcaaaaaaa@6FA4@

Q.3 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8IrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakqaabeqaaGqabiaa=zeacaWFPbGaa8NBaiaa=rgacaWFGaGaa83zaiaa=9gacaWFMbGaa8hiaiaa=fgacaWFUbGaa8hzaiaa=bcacaWFMbGaa83Baiaa=DgacaWFSaGaa8hiaiaa=LgacaWFMbaabaGaa8hkaiaa=LgacaWFPaGaaGPaVlaaykW7caWFMbWaaeWaaeaacaWF4baacaGLOaGaayzkaaGaa8xpamaaemaabaGaa8hEaaGaay5bSlaawIa7aiaaykW7caWFHbGaa8NBaiaa=rgacaaMc8Uaa83zamaabmaabaGaa8hEaaGaayjkaiaawMcaaiaa=1dadaabdaqaaiaa=vdacaWF4bGaa8xlaiaa=jdaaiaawEa7caGLiWoaaeaadaqadaqaaiaa=LgacaWFPbaacaGLOaGaayzkaaGaaGPaVlaa=zgadaqadaqaaiaa=HhaaiaawIcacaGLPaaacaWF9aGaa8hoaiaa=HhadaahaaWcbeqaaiaa=ndaaaGccaaMc8UaaGPaVlaa=fgacaWFUbGaa8hzaiaaykW7caaMc8Uaa83zamaabmaabaGaa8hEaaGaayjkaiaawMcaaiaa=1dacaWF4bWaaWbaaSqabeaadaWcaaqaaiaa=fdaaeaacaWFZaaaaaaaaaaa@82A6@

Ans

( i )f( x )=| x |andg( x )=| 5x2 | ( gof )( x )=g( f( x ) ) =g( | x | ) =| 5| x |2 | ( fog )( x )=f( g( x ) ) =f( | 5x2 | ) =| | 5x2 | | =| 5x2 | ( ii )f( x )=8 x 3 andg( x )= x 1 3 ( gof )( x )=g( f( x ) ) =g( 8 x 3 ) = ( 8 x 3 ) 1 3 =2x ( fog )( x )=f( g( x ) ) =f( x 1 3 ) =8 ( x 1 3 ) 3 =8x MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8IrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakqaabeqaamaabmaabaGaamyAaaGaayjkaiaawMcaaiaaykW7caaMc8UaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maaemaabaGaamiEaaGaay5bSlaawIa7aiaaykW7caWGHbGaamOBaiaadsgacaaMc8UaaGPaVlaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpdaabdaqaaiaaiwdacaWG4bGaeyOeI0IaaGOmaaGaay5bSlaawIa7aaqaaiabgsJiCnaabmaabaGaam4zaiaad+gacaWGMbaacaGLOaGaayzkaaWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0Jaam4zamaabmaabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaaxMaacaWLjaGaaGPaVlaaykW7cqGH9aqpcaWGNbWaaeWaaeaadaabdaqaaiaadIhaaiaawEa7caGLiWoaaiaawIcacaGLPaaaaeaacaWLjaGaaCzcaiaaykW7caaMc8Uaeyypa0ZaaqWaaeaacaaI1aWaaqWaaeaacaWG4baacaGLhWUaayjcSdGaeyOeI0IaaGOmaaGaay5bSlaawIa7aaqaaiaaykW7caaMc8UaaGPaVlaaykW7daqadaqaaiaadAgacaWGVbGaam4zaaGaayjkaiaawMcaamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadAgadaqadaqaaiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaacaWLjaGaaCzcaiaaykW7caaMc8Uaeyypa0JaamOzamaabmaabaWaaqWaaeaacaaI1aGaamiEaiabgkHiTiaaikdaaiaawEa7caGLiWoaaiaawIcacaGLPaaaaeaaaeaacaWLjaGaaCzcaiaaykW7caaMc8Uaeyypa0ZaaqWaaeaadaabdaqaaiaaiwdacaWG4bGaeyOeI0IaaGOmaaGaay5bSlaawIa7aaGaay5bSlaawIa7aaqaaiaaxMaacaWLjaGaaGPaVlaaykW7cqGH9aqpdaabdaqaaiaaiwdacaWG4bGaeyOeI0IaaGOmaaGaay5bSlaawIa7aaqaamaabmaabaGaamyAaiaadMgaaiaawIcacaGLPaaacaaMc8UaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaaiIdacaWG4bWaaWbaaSqabeaacaaIZaaaaOGaaGPaVlaaykW7caWGHbGaamOBaiaadsgacaaMc8UaaGPaVlaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWG4bWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIZaaaaaaaaOqaaiabgsJiCnaabmaabaGaam4zaiaad+gacaWGMbaacaGLOaGaayzkaaWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0Jaam4zamaabmaabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaaxMaacaWLjaGaaGPaVlaaykW7cqGH9aqpcaWGNbWaaeWaaeaacaaI4aGaamiEamaaCaaaleqabaGaaG4maaaaaOGaayjkaiaawMcaaaqaaiaaxMaacaWLjaGaaGPaVlaaykW7cqGH9aqpdaqadaqaaiaaiIdacaWG4bWaaWbaaSqabeaacaaIZaaaaaGccaGLOaGaayzkaaWaaWbaaSqabeaadaWcaaqaaiaaigdaaeaacaaIZaaaaaaaaOqaaiaaxMaacaWLjaGaaGPaVlaaykW7cqGH9aqpcaaIYaGaamiEaaqaaiaaykW7caaMc8UaaGPaVlaaykW7daqadaqaaiaadAgacaWGVbGaam4zaaGaayjkaiaawMcaamaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9iaadAgadaqadaqaaiaadEgadaqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaacaWLjaGaaCzcaiaaykW7caaMc8Uaeyypa0JaamOzamaabmaabaGaamiEamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaG4maaaaaaaakiaawIcacaGLPaaaaeaacaWLjaGaaCzcaiaaykW7caaMc8Uaeyypa0JaaGioamaabmaabaGaamiEamaaCaaaleqabaWaaSaaaeaacaaIXaaabaGaaG4maaaaaaaakiaawIcacaGLPaaadaahaaWcbeqaaiaaiodaaaaakeaacaWLjaGaaCzcaiaaykW7caaMc8Uaeyypa0JaaGioaiaadIhaaaaa@39DE@

Q.4

If f( x )= 4x+3 6x4 ,x 2 3 , show that fof( x )=x,for all x 2 3 . What is the inverse of f? MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8IrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakqaabeqaaGqabiaa=LeacaWFMbGaa8hiaiaa=zgadaqadaqaaiaa=HhaaiaawIcacaGLPaaacaWF9aWaaSaaaeaacaWF0aGaa8hEaiaa=TcacaWFZaaabaGaa8Nnaiaa=HhacaWFTaGaa8hnaaaacaWFSaGaaGPaVlaa=HhacqGHGjsUdaWcaaqaaiaa=jdaaeaacaWFZaaaaiaa=XcacaWFGaGaa83Caiaa=HgacaWFVbGaa83Daiaa=bcacaWF0bGaa8hAaiaa=fgacaWF0bGaa8hiaiaa=zgacaWFVbGaa8NzamaabmaabaGaa8hEaaGaayjkaiaawMcaaiaa=1dacaWF4bGaa8hlaiaaykW7caWFMbGaa83Baiaa=jhacaWFGaGaa8xyaiaa=XgacaWFSbGaa8hiaiaa=HhacqGHGjsUdaWcaaqaaiaa=jdaaeaacaWFZaaaaiaa=5caaeaacaWFxbGaa8hAaiaa=fgacaWF0bGaa8hiaiaa=LgacaWFZbGaa8hiaiaa=rhacaWFObGaa8xzaiaa=bcacaWFPbGaa8NBaiaa=zhacaWFLbGaa8NCaiaa=nhacaWFLbGaa8hiaiaa=9gacaWFMbGaa8hiaiaa=zgacaWF=aaaaaa@803D@

Ans

It is given thatf( x )= 4x+3 6x4 ,then fof( x )=f( f( x ) ) =f( 4x+3 6x4 ) = 4( 4x+3 6x4 )+3 6( 4x+3 6x4 )4 = ( 16x+12+18x12 6x4 ) ( 24x+1824x+16 6x4 ) = 34x 34 fof( x )=x, for all x 2 3 . fof=I Hence, the given function f is invertible and the inverse of f is f itself. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8IrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakqaabeqaaiaadMeacaWG0bGaaeiiaiaabMgacaqGZbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabshacaqGObGaaeyyaiaabshacaaMc8UaaGPaVlaaykW7caaMc8ocbaGaa8NzamaabmaabaGaa8hEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaa8hnaiaa=HhacaWFRaGaa83maaqaaiaa=zdacaWF4bGaa8xlaiaa=rdaaaGaaiilaiaaykW7caWG0bGaamiAaiaadwgacaWGUbaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaa8Nzaiaa=9gacaWFMbWaaeWaaeaacaWF4baacaGLOaGaayzkaaGaeyypa0JaamOzamaabmaabaGaamOzamaabmaabaGaamiEaaGaayjkaiaawMcaaaGaayjkaiaawMcaaaqaaiaaxMaacaWLjaGaaCzcaiabg2da9iaadAgadaqadaqaamaalaaabaGaa8hnaiaa=HhacaWFRaGaa83maaqaaiaa=zdacaWF4bGaa8xlaiaa=rdaaaaacaGLOaGaayzkaaaabaGaaCzcaiaaxMaacaWLjaGaeyypa0ZaaSaaaeaacaaI0aWaaeWaaeaadaWcaaqaaiaa=rdacaWF4bGaa83kaiaa=ndaaeaacaWF2aGaa8hEaiaa=1cacaWF0aaaaaGaayjkaiaawMcaaiabgUcaRiaaiodaaeaacaaI2aWaaeWaaeaadaWcaaqaaiaa=rdacaWF4bGaa83kaiaa=ndaaeaacaWF2aGaa8hEaiaa=1cacaWF0aaaaaGaayjkaiaawMcaaiabgkHiTiaaisdaaaaabaGaaCzcaiaaxMaacaWLjaGaeyypa0ZaaSaaaeaadaqadaqaamaalaaabaGaaGymaiaaiAdacaWG4bGaey4kaSIaaGymaiaaikdacqGHRaWkcaaIXaGaaGioaiaadIhacqGHsislcaaIXaGaaGOmaaqaaiaaiAdacaWG4bGaeyOeI0IaaGinaaaaaiaawIcacaGLPaaaaeaadaqadaqaamaalaaabaGaaGOmaiaaisdacaWG4bGaey4kaSIaaGymaiaaiIdacqGHsislcaaIYaGaaGinaiaadIhacqGHRaWkcaaIXaGaaGOnaaqaaiaa=zdacaWF4bGaa8xlaiaa=rdaaaaacaGLOaGaayzkaaaaaaqaaiaaxMaacaWLjaGaaCzcaiabg2da9maalaaabaGaaG4maiaaisdacaWG4baabaGaaG4maiaaisdaaaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8Uaa8Nzaiaa=9gacaWFMbWaaeWaaeaacaWF4baacaGLOaGaayzkaaGaeyypa0JaamiEaiaacYcacaqGGaGaaeOzaiaab+gacaqGYbGaaeiiaiaabggacaqGSbGaaeiBaiaabccacaqG4bGaeyiyIK7aaSaaaeaacaaIYaaabaGaaG4maaaacaGGUaaabaGaeyO0H4TaaCzcaiaaxMaacaaMc8UaaGPaVlaadAgacaWGVbGaamOzaiabg2da9iaadMeaaeaacaqGibGaaeyzaiaab6gacaqGJbGaaeyzaiaabYcacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabAgacaqG1bGaaeOBaiaabogacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabAgacaqGGaGaaeyAaiaabohacaqGGaGaaeyAaiaab6gacaqG2bGaaeyzaiaabkhacaqG0bGaaeyAaiaabkgacaqGSbGaaeyzaiaabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabMgacaqGUbGaaeODaiaabwgacaqGYbGaae4CaiaabwgacaqGGaGaae4BaiaabAgacaqGGaGaaeOzaiaabccaaeaacaqGPbGaae4CaiaabccacaqGMbGaaeiiaiaabMgacaqG0bGaae4CaiaabwgacaqGSbGaaeOzaiaab6caaaaa@446B@

Q.5

State with reason whether following functionshave inverse(i) f:{1,2,3,4}{10} with    f={(1,10),(2,10),(3,10),(4,10)}(ii)  g:{5,6,7,8}{1,2,3,4} with      g={(5,4),(6,3),(7,4),(8,2)}(iii)h:{2,3,4,5}{7,9,11,13} with      h={(2,7),(3,9),(4,11),(5,13)}

Ans

(i) f: {1, 2, 3, 4}{10}defined as:    f = {(1, 10), (2, 10), (3, 10), (4, 10)}From the given definition of f, we can see that f is a many one function as: f(1) = f(2)= f(3) = f(4) = 10f is not oneone.Hence, function f does not have an inverse.(ii)g: {5, 6, 7, 8}{1, 2, 3, 4} defined as:      g = {(5, 4), (6, 3), (7, 4), (8, 2)}From the given definition of g, it is seen that g is a many onefunction as: g(5) = g(7) = 4.g is not oneone.Hence, function g does not have an inverse.(iii) h: {2, 3, 4, 5}{7, 9, 11, 13} defined as:        h = {(2, 7), (3, 9), (4, 11), (5, 13)It is seen that all distinct elements of the set {2, 3, 4, 5} have distinct images under h.Function h is oneone.Also, h is onto since for every element y of the set {7, 9, 11, 13}, there exists an  element x in the set {2, 3, 4, 5}  such that h(x) = y.Thus, h is a oneone and onto function. Hence, h has an inverse.

Q.6

Show that f: [1, 1]R, given by f( x )= x x+2 isoneone. Find the inverse of the function f: [1, 1]Range f.MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8IrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakqaabeqaaGqabiaa=nfacaWFObGaa83Baiaa=DhacaWFGaGaa8hDaiaa=HgacaWFHbGaa8hDaiaa=bcacaWFMbGaa8Noaiaa=bcacaWFBbGaeyOeI0Iaa8xmaiaa=XcacaWFGaGaa8xmaiaa=1facqGHsgIRcaWFsbGaa8hlaiaa=bcacaWFNbGaa8xAaiaa=zhacaWFLbGaa8NBaiaa=bcacaWFIbGaa8xEaiaa=bcacaWFMbWaaeWaaeaacaWF4baacaGLOaGaayzkaaGaa8xpamaalaaabaGaa8hEaaqaaiaa=HhacaWFRaGaa8NmaaaacaWFGaGaa8xAaiaa=nhacaaMc8Uaa83Baiaa=5gacaWFLbGaa8xlaiaa=9gacaWFUbGaa8xzaiaa=5cacaWFGaaabaGaa8Nraiaa=LgacaWFUbGaa8hzaiaa=bcacaWFGaGaa8hDaiaa=HgacaWFLbGaa8hiaiaa=LgacaWFUbGaa8NDaiaa=vgacaWFYbGaa83Caiaa=vgacaWFGaGaa83Baiaa=zgacaWFGaGaa8hDaiaa=HgacaWFLbGaa8hiaiaa=zgacaWF1bGaa8NBaiaa=ngacaWF0bGaa8xAaiaa=9gacaWFUbGaa8hiaiaa=zgacaWF6aGaa8hiaiaa=TfacqGHsislcaWFXaGaa8hlaiaa=bcacaWFXaGaa8xxaiabgkziUkaa=jfacaWFHbGaa8NBaiaa=DgacaWFLbGaa8hiaiaa=zgacaWFUaaaaaa@9568@

Ans

f: [1, 1]R is given as f x = x x+2 Let f x =f y x x+2 = y y+2 x y+2 =y x+2 xy+2x=xy+2y x=y f is one-one function. It is clear that f: [1, 1]Range f is onto. f: [1, 1]Range f is one-one and onto and therefore, the inverse of the function: f: [1, 1] Range f exists. Let g: Range f[1, 1] be the inverse of f. Let y be an arbitrary element of range f. Since f: [1, 1]Range f is onto, we have: f x =y for some x 1,1 y= x x+2 xy+2y=x 2y=xxy =x 1y x= 2y 1y ,y1 Now, let us define g: Range f[1, 1] as g y = 2y 1y ,y1. Now, gof x =g f x =g x x+2 = 2 x x+2 1 x x+2 = 2x x+2x = 2x 2 gof x =x fog y =f g y =f 2y 1y = 2y 1y 2y 1y +2 = 2y 2y+22y = 2y 2 fog y =y go f 1 = I 1,1 andfo g 1 = I Rangef f 1 =g f 1 y = 2y y1 ,y1. f 1 x = 2x x1 ,x1. MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8IrFz0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabAgacaqG6aGaaeiiaiaabUfacqGHsislcaqGXaGaaeil aiaabccacaqGXaGaaeyxaiabgkziUkaabkfacaqGGaGaaeyAaiaabo hacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeyy aiaabohacaqGGaGaaeOzamaabmaabaGaamiEaaGaayjkaiaawMcaai abg2da9maalaaabaGaamiEaaqaaiaadIhacqGHRaWkcaaIYaaaaaqa aiaadYeacaWGLbGaamiDaiaaykW7caWLjaGaaGPaVlaabccacaaMc8 UaaGPaVlaabAgadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqp caWGMbWaaeWaaeaacaWG5baacaGLOaGaayzkaaaabaGaeyO0H4TaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7daWc aaqaaiaadIhaaeaacaWG4bGaey4kaSIaaGOmaaaacqGH9aqpdaWcaa qaaiaadMhaaeaacaWG5bGaey4kaSIaaGOmaaaaaeaacqGHshI3caaM c8UaaGPaVlaadIhadaqadaqaaiaadMhacqGHRaWkcaaIYaaacaGLOa GaayzkaaGaeyypa0JaamyEamaabmaabaGaamiEaiabgUcaRiaaikda aiaawIcacaGLPaaaaeaacqGHshI3caaMc8UaaGPaVlaaykW7caaMc8 UaamiEaiaadMhacqGHRaWkcaaIYaGaamiEaiabg2da9iaadIhacaWG 5bGaey4kaSIaaGOmaiaadMhaaeaacqGHshI3caWLjaGaaCzcaiaadI hacqGH9aqpcaWG5baabaGaeyinIWLaamOzaiaabccacaqGPbGaae4C aiaabccacaqGVbGaaeOBaiaabwgacaqGTaGaae4Baiaab6gacaqGLb GaaeiiaiaabAgacaqG1bGaaeOBaiaabogacaqG0bGaaeyAaiaab+ga caqGUbGaaeOlaaqaaiaabMeacaqG0bGaaeiiaiaabMgacaqGZbGaae iiaiaabogacaqGSbGaaeyzaiaabggacaqGYbGaaeiiaiaabshacaqG ObGaaeyyaiaabshacaqGGaGaaeOzaiaabQdacaqGGaGaae4waiabgk HiTiaabgdacaqGSaGaaeiiaiaabgdacaqGDbGaeyOKH4QaaeOuaiaa bggacaqGUbGaae4zaiaabwgacaqGGaGaaeOzaiaabccacaqGPbGaae 4CaiaabccacaqGVbGaaeOBaiaabshacaqGVbGaaeOlaaqaaiabgsJi CjaabAgacaqG6aGaaeiiaiaabUfacqGHsislcaqGXaGaaeilaiaabc cacaqGXaGaaeyxaiabgkziUkaabkfacaqGHbGaaeOBaiaabEgacaqG LbGaaeiiaiaabAgacaqGGaGaaeyAaiaabohacaqGGaGaae4Baiaab6 gacaqGLbGaaeylaiaab+gacaqGUbGaaeyzaiaabccacaqGHbGaaeOB aiaabsgacaqGGaGaae4Baiaab6gacaqG0bGaae4BaiaabccacaqGHb GaaeOBaiaabsgacaqGGaGaaeiDaiaabIgacaqGLbGaaeOCaiaabwga caqGMbGaae4BaiaabkhacaqGLbGaaeilaiaabccaaeaacaqG0bGaae iAaiaabwgacaqGGaGaaeyAaiaab6gacaqG2bGaaeyzaiaabkhacaqG ZbGaaeyzaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaabw gacaqGGaGaaeOzaiaabwhacaqGUbGaae4yaiaabshacaqGPbGaae4B aiaab6gacaqG6aaabaGaaeOzaiaabQdacaqGGaGaae4waiabgkHiTi aabgdacaqGSaGaaeiiaiaabgdacaqGDbGaeyOKH4Qaaeiiaiaabkfa caqGHbGaaeOBaiaabEgacaqGLbGaaeiiaiaabAgacaqGGaGaaeyzai aabIhacaqGPbGaae4CaiaabshacaqGZbGaaeOlaaqaaiaabYeacaqG LbGaaeiDaiaabccacaqGNbGaaeOoaiaabccacaqGsbGaaeyyaiaab6 gacaqGNbGaaeyzaiaabccacaqGMbGaeyOKH4Qaae4waiabgkHiTiaa bgdacaqGSaGaaeiiaiaabgdacaqGDbGaaeiiaiaabkgacaqGLbGaae iiaiaabshacaqGObGaaeyzaiaabccacaqGPbGaaeOBaiaabAhacaqG LbGaaeOCaiaabohacaqGLbGaaeiiaiaab+gacaqGMbGaaeiiaiaabA gacaqGUaaabaGaaeitaiaabwgacaqG0bGaaeiiaiaabMhacaqGGaGa aeOyaiaabwgacaqGGaGaaeyyaiaab6gacaqGGaGaaeyyaiaabkhaca qGIbGaaeyAaiaabshacaqGYbGaaeyyaiaabkhacaqG5bGaaeiiaiaa bwgacaqGSbGaaeyzaiaab2gacaqGLbGaaeOBaiaabshacaqGGaGaae 4BaiaabAgacaqGGaGaaeOCaiaabggacaqGUbGaae4zaiaabwgacaqG GaGaaeOzaiaab6caaeaacaqGtbGaaeyAaiaab6gacaqGJbGaaeyzai aabccacaqGMbGaaeOoaiaabccacaqGBbGaeyOeI0IaaeymaiaabYca caqGGaGaaeymaiaab2facqGHsgIRcaqGsbGaaeyyaiaab6gacaqGNb GaaeyzaiaabccacaqGMbGaaeiiaiaabMgacaqGZbGaaeiiaiaab+ga caqGUbGaaeiDaiaab+gacaqGSaGaaeiiaiaabEhacaqGLbGaaeiiai aabIgacaqGHbGaaeODaiaabwgacaqG6aaabaGaaeiiaiaabccacaqG MbWaaeWaaeaacaWG4baacaGLOaGaayzkaaGaeyypa0JaamyEaiaaxM aacaWGMbGaam4BaiaadkhacaqGGaGaae4Caiaab+gacaqGTbGaaeyz aiaabccacaqG4bGaeyicI48aamWaaeaacqGHsislcaaIXaGaaiilai aaigdaaiaawUfacaGLDbaaaeaacqGHshI3caaMc8UaaGPaVlaaykW7 caaMc8UaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaamyEaiabg2da9maalaaabaGaamiEaaqaaiaadIha cqGHRaWkcaaIYaaaaaqaaiabgkDiElaadIhacaWG5bGaey4kaSIaaG OmaiaadMhacqGH9aqpcaWG4baabaGaeyO0H4TaaCzcaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaikdacaWG5bGaeyypa0Jaam iEaiabgkHiTiaadIhacaWG5baabaGaaCzcaiaaxMaacaaMc8UaaGPa VlaaykW7cqGH9aqpcaWG4bWaaeWaaeaacaaIXaGaeyOeI0IaamyEaa GaayjkaiaawMcaaaqaaiabgkDiElaaxMaacaaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadIhacqGH9aqpdaWcaa qaaiaaikdacaWG5baabaGaaGymaiabgkHiTiaadMhaaaGaaiilaiaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadMhacqGHGjsUca aIXaaabaGaaeOtaiaab+gacaqG3bGaaeilaiaabccacaqGSbGaaeyz aiaabshacaqGGaGaaeyDaiaabohacaqGGaGaaeizaiaabwgacaqGMb GaaeyAaiaab6gacaqGLbGaaeiiaiaabEgacaqG6aGaaeiiaiaabkfa caqGHbGaaeOBaiaabEgacaqGLbGaaeiiaiaabAgacqGHsgIRcaqGBb GaeyOeI0IaaeymaiaabYcacaqGGaGaaeymaiaab2facaqGGaGaaeyy aiaabohaaeaacaWLjaGaaGPaVlaaykW7caaMc8Uaam4zamaabmaaba GaamyEaaGaayjkaiaawMcaaiabg2da9maalaaabaGaaGOmaiaadMha aeaacaaIXaGaeyOeI0IaamyEaaaacaGGSaGaaGPaVlaaykW7caWG5b GaeyiyIKRaaGymaiaac6caaeaacaWGobGaam4BaiaadEhacaGGSaGa aGPaVdqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaeWaaeaaca WGNbGaam4BaiaadAgaaiaawIcacaGLPaaadaqadaqaaiaadIhaaiaa wIcacaGLPaaacqGH9aqpcaWGNbWaaeWaaeaacaWGMbWaaeWaaeaaca WG4baacaGLOaGaayzkaaaacaGLOaGaayzkaaaabaGaaCzcaiaaxMaa caaMc8UaaGPaVlabg2da9iaadEgadaqadaqaamaalaaabaGaamiEaa qaaiaadIhacqGHRaWkcaaIYaaaaaGaayjkaiaawMcaaaqaaiaaxMaa caWLjaGaaGPaVlaaykW7cqGH9aqpdaWcaaqaaiaaikdadaqadaqaam aalaaabaGaamiEaaqaaiaadIhacqGHRaWkcaaIYaaaaaGaayjkaiaa wMcaaaqaaiaaigdacqGHsisldaqadaqaamaalaaabaGaamiEaaqaai aadIhacqGHRaWkcaaIYaaaaaGaayjkaiaawMcaaaaaaeaacaWLjaGa aCzcaiaaykW7caaMc8Uaeyypa0ZaaSaaaeaacaaIYaGaamiEaaqaai aadIhacqGHRaWkcaaIYaGaeyOeI0IaamiEaaaaaeaacaWLjaGaaCzc aiaaykW7caaMc8Uaeyypa0ZaaSaaaeaacaaIYaGaamiEaaqaaiaaik daaaaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8+aaeWaaeaacaWGNbGaam4BaiaadAgaaiaawIcaca GLPaaadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWG4baa baGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVpaabmaabaGaamOzaiaad+gacaWGNbaacaGLOaGa ayzkaaWaaeWaaeaacaWG5baacaGLOaGaayzkaaGaeyypa0JaamOzam aabmaabaGaam4zamaabmaabaGaamyEaaGaayjkaiaawMcaaaGaayjk aiaawMcaaaqaaiaaxMaacaWLjaGaaGPaVlaaykW7cqGH9aqpcaWGMb WaaeWaaeaadaWcaaqaaiaaikdacaWG5baabaGaaGymaiabgkHiTiaa dMhaaaaacaGLOaGaayzkaaaabaGaaCzcaiaaxMaacaaMc8UaaGPaVl abg2da9maalaaabaWaaeWaaeaadaWcaaqaaiaaikdacaWG5baabaGa aGymaiabgkHiTiaadMhaaaaacaGLOaGaayzkaaaabaWaaSaaaeaaca aIYaGaamyEaaqaaiaaigdacqGHsislcaWG5baaaiabgUcaRiaaikda aaaabaGaaCzcaiaaxMaacaaMc8UaaGPaVlabg2da9maalaaabaGaaG OmaiaadMhaaeaacaaIYaGaamyEaiabgUcaRiaaikdacqGHsislcaaI YaGaamyEaaaaaeaacaWLjaGaaCzcaiaaykW7caaMc8Uaeyypa0ZaaS aaaeaacaaIYaGaamyEaaqaaiaaikdaaaaabaGaaGPaVlaaykW7caaM c8+aaeWaaeaacaWGMbGaam4BaiaadEgaaiaawIcacaGLPaaadaqada qaaiaadMhaaiaawIcacaGLPaaacqGH9aqpcaWG5baabaGaeyinIWLa am4zaiaad+gacaWGMbWaaWbaaSqabeaacqGHsislcaaIXaaaaOGaey ypa0JaamysamaaBaaaleaadaWadaqaaiabgkHiTiaaigdacaGGSaGa aGymaaGaay5waiaaw2faaaqabaGccaaMc8UaaGPaVlaadggacaWGUb GaamizaiaaykW7caaMc8UaamOzaiaad+gacaWGNbWaaWbaaSqabeaa cqGHsislcaaIXaaaaOGaeyypa0JaamysamaaBaaaleaacaWGsbGaam yyaiaad6gacaWGNbGaamyzaiaaykW7caWGMbaabeaaaOqaaiabgsJi CjaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaadAgadaahaaWcbeqaaiabgkHiTiaaigdaaaGccqGH9aqp caWGNbaabaGaeyO0H4TaaGPaVlaadAgadaahaaWcbeqaaiabgkHiTi aaigdaaaGcdaqadaqaaiaadMhaaiaawIcacaGLPaaacqGH9aqpdaWc aaqaaiaaikdacaWG5baabaGaamyEaiabgkHiTiaaigdaaaGaaiilai aaykW7caWG5bGaeyiyIKRaaGymaiaac6caaeaacqGHshI3caaMc8Ua amOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaabaGaamiEaa GaayjkaiaawMcaaiabg2da9maalaaabaGaaGOmaiaadIhaaeaacaWG 4bGaeyOeI0IaaGymaaaacaGGSaGaaGPaVlaadIhacqGHGjsUcaaIXa GaaiOlaaaaaa@8718@

Q.7

Consider f : R Rgiven by f(x)=4x+3. Show that f isinvertible. Find the inverse off.

Ans

f: RR is given by, f(x) = 4x + 3Oneone:Let f(x) = f(y).4x + 3=4y + 3        4x=4y            x=yf is a oneone function.Onto:For yR, let y = 4x + 3.          x=y34RTherefore, for any yR, there exists,f1 exists.Let us define g: RR by gy=y34Now,gofx=gfx        =g4x+3        =4x+334gofx=xfogy=fgy        =fy34        =4y34+3fogy=ygof=fog=IRHence, f is invertible and the inverse of f is given by      f1y=gy        =y34.        f1x=x34

Q.8

Consider f: R + [4,) given by f(x) = x 2 + 4. Show that f is invertible with the inverse f 1 of given f by, where R + is the set of all nonnegative realnumbers. MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8IrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakqaabeqaaGqabiaa=neacaWFVbGaa8NBaiaa=nhacaWFPbGaa8hzaiaa=vgacaWFYbGaa8hiaiaa=zgacaWF6aGaa8hiaiaa=jfadaWgaaWcbaGaa83kaaqabaGccqGHsgIRcaWFBbGaa8hnaiaa=XcacqGHEisPcaWFPaGaa8hiaiaa=DgacaWFPbGaa8NDaiaa=vgacaWFUbGaa8hiaiaa=jgacaWF5bGaa8hiaiaa=zgacaWFOaGaa8hEaiaa=LcacaWFGaGaa8xpaiaa=bcacaWF4bWaaWbaaSqabeaacaWFYaaaaOGaa8hiaiaa=TcacaWFGaGaa8hnaiaa=5cacaWFGaGaa83uaiaa=HgacaWFVbGaa83Daiaa=bcacaWF0bGaa8hAaiaa=fgacaWF0bGaa8hiaiaa=zgacaWFGaGaa8xAaiaa=nhacaWFGaaabaGaa8xAaiaa=5gacaWF2bGaa8xzaiaa=jhacaWF0bGaa8xAaiaa=jgacaWFSbGaa8xzaiaa=bcacaWF3bGaa8xAaiaa=rhacaWFObGaa8hiaiaa=rhacaWFObGaa8xzaiaa=bcacaWFPbGaa8NBaiaa=zhacaWFLbGaa8NCaiaa=nhacaWFLbGaa8hiaiaa=zgadaahaaWcbeqaaiaa=1cacaWFXaaaaOGaa8hiaiaa=9gacaWFMbGaa8hiaiaa=DgacaWFPbGaa8NDaiaa=vgacaWFUbGaa8hiaiaa=zgacaWFGaGaa8Nyaiaa=LhacaWFSaGaa8hiaiaa=DhacaWFObGaa8xzaiaa=jhacaWFLbGaa8hiaiaa=jfadaahaaWcbeqaaiaa=TcaaaGccaWFGaGaa8xAaiaa=nhacaWFGaGaa8hDaiaa=HgacaWFLbGaa8hiaiaa=nhacaWFLbGaa8hDaiaa=bcaaeaacaWFVbGaa8Nzaiaa=bcacaWFHbGaa8hBaiaa=XgacaWFGaGaa8NBaiaa=9gacaWFUbGaa8xlaiaa=5gacaWFLbGaa83zaiaa=fgacaWF0bGaa8xAaiaa=zhacaWFLbGaa8hiaiaa=jhacaWFLbGaa8xyaiaa=XgacaaMc8UaaGPaVlaa=5gacaWF1bGaa8xBaiaa=jgacaWFLbGaa8NCaiaa=nhacaWFUaaaaaa@C381@

Ans

f: R + [4, ) is given as f(x) = x 2 + 4. One-one: Let f(x) = f(y) x 2 + 4= y 2 + 4 x 2 = y 2 x=y asx=y R + fisoneone function. Onto: For y [4,), let y= x 2 + 4 x= y4 0 Therefore, for any yR, there existsx= y4 0, such that f x =f y4 = y4 2 +4 =y4+4 f x =y f is onto. Thus, f is one-one and onto and therefore, f -1 exists. Let us define g: [4,) R + by, g y = y4 Now, gof x =g f x =g x 2 +4 = x 2 +4 4 gof x =x fog y =f g y =f y4 = y4 2 +4 =y4+4 fog y =y gof=fog= I R + . Hence, f is invertible and the inverse of f is given by f 1 y =g y = y4 f 1 x = x4 MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8IrFz0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabAgacaqG6aGaaeiiaiaabkfadaWgaaWcbaGaae4kaaqa baGccqGHsgIRcaqGGaGaae4waiaabsdacaqGSaGaaeiiaiabg6HiLk aabMcacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMgacaqG2bGa aeyzaiaab6gacaqGGaGaaeyyaiaabohacaqGGaGaaeOzaiaabIcaca qG4bGaaeykaiaabccacaqG9aGaaeiiaiacycyG4bWaiGjGCaaaleqc ycyaiGjGcGaMagOmaaaakiacycyGGaGaiGjGbUcacGaMagiiaiacyc yG0aGaaeOlaaqaaiaab+eacaqGUbGaaeyzaiaab2cacaqGVbGaaeOB aiaabwgacaqG6aaabaGaaGPaVlaaykW7caaMc8UaaGPaVlaabYeaca qGLbGaaeiDaiaabccacaqGMbGaaeikaiaabIhacaqGPaGaaeiiaiaa b2dacaqGGaGaaeOzaiaabIcacaqG5bGaaeykaaqaaiabgkDiElaayk W7caaMc8UaaGPaVlaabIhadaahaaWcbeqaaiaabkdaaaGccaqGGaGa ae4kaiaabccacaqG0aGaeyypa0JaaeyEamaaCaaaleqabaGaaeOmaa aakiaabccacaqGRaGaaeiiaiaabsdaaeaacqGHshI3caaMc8UaaGPa VlaaykW7caWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaabIhadaahaaWcbeqaaiaabkdaaaGccqGH9aqpcaWG5bWa aWbaaSqabeaacaaIYaaaaaGcbaGaeyO0H4TaaGPaVlaaykW7caaMc8 UaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaadIhacqGH9aqpcaWG5bGaaCzcaiaaxMaadaWada qaaiaadggacaWGZbGaaGPaVlaadIhacqGH9aqpcaWG5bGaeyicI4Sa amOuamaaBaaaleaacqGHRaWkaeqaaaGccaGLBbGaayzxaaaabaGaey inIWLaaGPaVlaadAgacaaMc8UaaGPaVlaadMgacaWGZbGaaGPaVlaa ykW7caWGVbGaamOBaiaadwgacqGHsislcaWGVbGaamOBaiaadwgaca qGGaGaaeOzaiaabwhacaqGUbGaae4yaiaabshacaqGPbGaae4Baiaa b6gacaGGUaaabaGaam4taiaad6gacaWG0bGaam4BaiaacQdaaeaaca qGgbGaae4BaiaabkhacaqGGaGaaeyEaiabgIGiolaabccacaqGBbGa aeinaiaabYcacqGHEisPcaqGPaGaaeilaiaabccaaeaacaqGGaGaae iiaiaabccacaqGGaGaaeiiaiaabYgacaqGLbGaaeiDaiaabccacaqG 5bGaeyypa0JaaeiiaiaabIhadaahaaWcbeqaaiaabkdaaaGccaqGGa Gaae4kaiaabccacaqG0aaabaGaaCzcaiaaykW7caaMc8UaaGPaVlaa ykW7caqG4bGaeyypa0ZaaOaaaeaacaWG5bGaeyOeI0IaaGinaaWcbe aakiabgwMiZkaaicdaaeaacaqGubGaaeiAaiaabwgacaqGYbGaaeyz aiaabAgacaqGVbGaaeOCaiaabwgacaqGSaGaaeiiaiaabAgacaqGVb GaaeOCaiaabccacaqGHbGaaeOBaiaabMhacaqGGaGaaeyEaiabgIGi olaabkfacaqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabkhacaqGLb GaaeiiaiaabwgacaqG4bGaaeyAaiaabohacaqG0bGaae4CaiaaykW7 caqG4bGaeyypa0ZaaOaaaeaacaWG5bGaeyOeI0IaaGinaaWcbeaaki abgwMiZkaaicdacaGGSaGaaeiiaiaabohacaqG1bGaae4yaiaabIga caqGGaGaaeiDaiaabIgacaqGHbGaaeiDaaqaaiaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabAgadaqa daqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWGMbWaaeWaaeaada GcaaqaaiaadMhacqGHsislcaaI0aaaleqaaaGccaGLOaGaayzkaaaa baGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8Uaeyypa0ZaaeWaaeaadaGcaaqaaiaadMhacqGHsi slcaaI0aaaleqaaaGccaGLOaGaayzkaaWaaWbaaSqabeaacaaIYaaa aOGaey4kaSIaaGinaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iaadMhacqGHsi slcaaI0aGaey4kaSIaaGinaaqaaiaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaabAgadaqadaqaaiaadI haaiaawIcacaGLPaaacaaMc8Uaeyypa0JaamyEaaqaaiabgsJiCjaa ykW7caWGMbGaaeiiaiaabMgacaqGZbGaaeiiaiaab+gacaqGUbGaae iDaiaab+gacaqGUaaabaGaaeivaiaabIgacaqG1bGaae4CaiaabYca caqGGaGaaeOzaiaabccacaqGPbGaae4CaiaabccacaqGVbGaaeOBai aabwgacaqGTaGaae4Baiaab6gacaqGLbGaaeiiaiaabggacaqGUbGa aeizaiaabccacaqGVbGaaeOBaiaabshacaqGVbGaaeiiaiaabggaca qGUbGaaeizaiaabccacaqG0bGaaeiAaiaabwgacaqGYbGaaeyzaiaa bAgacaqGVbGaaeOCaiaabwgacaqGSaGaaeiiaiaabAgadaahaaWcbe qaaiaab2cacaqGXaaaaOGaaeiiaiaabwgacaqG4bGaaeyAaiaaboha caqG0bGaae4Caiaab6caaeaacaqGmbGaaeyzaiaabshacaqGGaGaae yDaiaabohacaqGGaGaaeizaiaabwgacaqGMbGaaeyAaiaab6gacaqG LbGaaeiiaiaabEgacaqG6aGaaeiiaiaabUfacaqG0aGaaeilaiabg6 HiLkaabMcacqGHsgIRcaqGGaGaaeOuamaaBaaaleaadaahaaadbeqa aiaabUcaaaWccaqGGaaabeaakiaabkgacaqG5bGaaeilaaqaaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7caaMc8UaaCzcaiaabEgadaqadaqaaiaadMhaaiaawIcaca GLPaaacqGH9aqpdaGcaaqaaiaadMhacqGHsislcaaI0aaaleqaaaGc baGaamOtaiaad+gacaWG3bGaaiilaiaaykW7daqadaqaaiaadEgaca WGVbGaamOzaaGaayjkaiaawMcaamaabmaabaGaamiEaaGaayjkaiaa wMcaaiabg2da9iaadEgadaqadaqaaiaadAgadaqadaqaaiaadIhaai aawIcacaGLPaaaaiaawIcacaGLPaaaaeaacaWLjaGaaCzcaiabg2da 9iaadEgadaqadaqaaiaadIhadaahaaWcbeqaaiaaikdaaaGccqGHRa WkcaaI0aaacaGLOaGaayzkaaaabaGaaCzcaiaaxMaacqGH9aqpdaGc aaqaamaabmaabaGaamiEamaaCaaaleqabaGaiGjGikdaaaGccqGHRa WkcaaI0aaacaGLOaGaayzkaaGaeyOeI0IaaGinaaWcbeaaaOqaaiaa xMaacaaMc8+aaeWaaeaacaWGNbGaam4BaiaadAgaaiaawIcacaGLPa aadaqadaqaaiaadIhaaiaawIcacaGLPaaacqGH9aqpcaWG4baabaGa aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7daqadaqaaiaadAgacaWGVbGaam4zaaGaayjk aiaawMcaamaabmaabaGaamyEaaGaayjkaiaawMcaaiabg2da9iaadA gadaqadaqaaiaadEgadaqadaqaaiaadMhaaiaawIcacaGLPaaaaiaa wIcacaGLPaaaaeaacaWLjaGaaCzcaiabg2da9iaadAgadaqadaqaam aakaaabaGaamyEaiabgkHiTiaaisdaaSqabaaakiaawIcacaGLPaaa aeaacaWLjaGaaCzcaiabg2da9maabmaabaWaaOaaaeaacaWG5bGaey OeI0IaaGinaaWcbeaaaOGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaakiabgUcaRiaaisdaaeaacaWLjaGaaCzcaiabg2da9iaadMhacq GHsislcaaI0aGaey4kaSIaaGinaaqaaiaaykW7caaMc8UaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aae WaaeaacaWGMbGaam4BaiaadEgaaiaawIcacaGLPaaadaqadaqaaiaa dMhaaiaawIcacaGLPaaacqGH9aqpcaWG5baabaGaeyinIWLaam4zai aad+gacaWGMbGaeyypa0JaaGPaVlaadAgacaWGVbGaam4zaiabg2da 9iaadMeadaWgaaWcbaGaamOuamaaCaaameqabaGaey4kaScaaaWcbe aakiaac6caaeaacaqGibGaaeyzaiaab6gacaqGJbGaaeyzaiaabYca caqGGaGaaeOzaiaabccacaqGPbGaae4CaiaabccacaqGPbGaaeOBai aabAhacaqGLbGaaeOCaiaabshacaqGPbGaaeOyaiaabYgacaqGLbGa aeiiaiaabggacaqGUbGaaeizaiaabccacaqG0bGaaeiAaiaabwgaca qGGaGaaeyAaiaab6gacaqG2bGaaeyzaiaabkhacaqGZbGaaeyzaiaa bccacaqGVbGaaeOzaiaabccacaqGMbGaaeiiaiaabMgacaqGZbGaae iiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabkgacaqG 5baabaGaamOzamaaCaaaleqabaGaeyOeI0IaaGymaaaakmaabmaaba GaamyEaaGaayjkaiaawMcaaiabg2da9iaadEgadaqadaqaaiaadMha aiaawIcacaGLPaaacqGH9aqpdaGcaaqaaiaadMhacqGHsislcaaI0a aaleqaaaGcbaGaeyO0H4TaamOzamaaCaaaleqabaGaeyOeI0IaaGym aaaakmaabmaabaGaamiEaaGaayjkaiaawMcaaiabg2da9maakaaaba GaamiEaiabgkHiTiaaisdaaSqabaaaaaa@FA70@

Q.9 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8IrFz0xbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakqaabeqaaGqabiaa=neacaWFVbGaa8NBaiaa=nhacaWFPbGaa8hzaiaa=vgacaWFYbGaa8hiaiaa=zgacaWF6aGaa8hiaiaa=jfadaWgaaWcbaGaa83kaaqabaGccqGHsgIRcaWFGaGaa83waiaa=1cacaWF1aGaa8hlaiaa=bcacqGHEisPcaWFPaGaa8hiaiaa=DgacaWFPbGaa8NDaiaa=vgacaWFUbGaa8hiaiaa=jgacaWF5bGaa8hiaiaa=zgacaWFOaGaa8hEaiaa=LcacaWFGaGaeyypa0Jaa8hiaiaa=LdacaWF4bWaaWbaaSqabeaacaWFYaaaaOGaa8hiaiaa=TcacaWFGaGaa8Nnaiaa=HhacaWFTaGaa8xnaiaa=5cacaWFGaaabaGaa83uaiaa=HgacaWFVbGaa83Daiaa=bcacaWF0bGaa8hAaiaa=fgacaWF0bGaa8hiaiaa=zgacaWFGaGaa8xAaiaa=nhacaWFGaGaa8xAaiaa=5gacaWF2bGaa8xzaiaa=jhacaWF0bGaa8xAaiaa=jgacaWFSbGaa8xzaiaa=bcacaWF3bGaa8xAaiaa=rhacaWFObGaa8hiaiaa=zgadaahaaWcbeqaaiabgkHiTiaa=fdaaaGcdaqadaqaaiaa=LhaaiaawIcacaGLPaaacqGH9aqpdaqadaqaamaalaaabaWaaeWaaeaadaGcaaqaaiaa=LhacaWFRaGaa8NnaaWcbeaaaOGaayjkaiaawMcaaiabgkHiTiaa=fdaaeaacaWFZaaaaaGaayjkaiaawMcaaiaa=5caaaaa@8D83@

Ans

f: R + [5, ) is given as f(x) = 9x 2 + 6x5. Let y be an arbitrary element of [5,). Let y = 9x 2 + 6x5 9x 2 + 6x 5+y =0 x= 6± 6 2 4×9× 5+y 2×9 = 6± 36+36 5+y 18 = 6±6 1+5+y 18 x= 1± 6+y 3 = 6+y 1 3 ∵y6y+60 f is onto, thereby range f = [5, ). Let us define g: [5, ) R + as g y = y+6 1 3 Now, gof x =g f x =g 9x 2 + 6x5 = 9x 2 + 6x5 +6 1 3 = 9x 2 + 6x+1 1 3 = 3x+1 2 1 3 = 3x+11 3 =x And, fog y =f g y =f y+6 1 3 =9 y+6 1 3 2 + 6 y+6 1 3 5 =9 y+62 y+6 +1 9 +2 y+6 25 =y+62 y+6 +1+2 y+6 25 fog y =y gof= I R andfog= I 5, Hence, f is invertible and the inverse of f is given by f 1 y =g y = y+6 1 3 . MathType@MTEF@5@5@+= feaahqart1ev3aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8IrFz0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabAgacaqG6aGaaeiiaiaabkfadaWgaaWcbaGaae4kaaqa baGccqGHsgIRcaqGGaGaae4waiabgkHiTiaabwdacaqGSaGaaeiiai abg6HiLkaabMcacaqGGaGaaeyAaiaabohacaqGGaGaae4zaiaabMga caqG2bGaaeyzaiaab6gacaqGGaGaaeyyaiaabohacaqGGaGaaeOzai aabIcacaqG4bGaaeykaiaabccacaqG9aGaaeiiaiaabMdacaqG4bWa aWbaaSqabeaacaqGYaaaaOGaaeiiaiaabUcacaqGGaGaaeOnaiaabI hacqGHsislcaqG1aGaaeOlaaqaaiaabYeacaqGLbGaaeiDaiaabcca caqG5bGaaeiiaiaabkgacaqGLbGaaeiiaiaabggacaqGUbGaaeiiai aabggacaqGYbGaaeOyaiaabMgacaqG0bGaaeOCaiaabggacaqGYbGa aeyEaiaabccacaqGLbGaaeiBaiaabwgacaqGTbGaaeyzaiaab6gaca qG0bGaaeiiaiaab+gacaqGMbGaaeiiaiaabUfacqGHsislcaqG1aGa aeilaiabg6HiLkaabMcacaqGUaaabaGaaeitaiaabwgacaqG0bGaae iiaiaaxMaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caqG5bGaaeiiaiabg2da9iaabccacaqG5aGaae iEamaaCaaaleqabaGaaeOmaaaakiaabccacaqGRaGaaeiiaiaabAda caqG4bGaeyOeI0IaaeynaaqaaiabgkDiElaaykW7caaMc8Uaaeyoai aabIhadaahaaWcbeqaaiaabkdaaaGccaqGGaGaae4kaiaabccacaqG 2aGaaeiEaiabgkHiTmaabmaabaGaaeynaiaabUcacaqG5baacaGLOa GaayzkaaGaeyypa0JaaeimaaqaaiabgkDiElaaxMaacaWLjaGaaCzc aiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaamiEaiabg2da9maalaaabaGaeyOeI0IaaGOnaiabgglaXoaakaaa baGaaGOnamaaCaaaleqabaGaaGOmaaaakiabgkHiTiaaisdacqGHxd aTcaaI5aGaey41aqRaeyOeI0YaaeWaaeaacaaI1aGaey4kaSIaamyE aaGaayjkaiaawMcaaaWcbeaaaOqaaiaaikdacqGHxdaTcaaI5aaaaa qaaiaaxMaacaWLjaGaaCzcaiaaxMaacaaMc8UaaGPaVlabg2da9maa laaabaGaeyOeI0IaaGOnaiabgglaXoaakaaabaGaaG4maiaaiAdacq GHRaWkcaaIZaGaaGOnamaabmaabaGaaGynaiabgUcaRiaadMhaaiaa wIcacaGLPaaaaSqabaaakeaacaaIXaGaaGioaaaaaeaacaWLjaGaaC zcaiaaxMaacaWLjaGaaGPaVlaaykW7cqGH9aqpdaWcaaqaaiabgkHi TiaaiAdacqGHXcqScaaI2aWaaOaaaeaacaaIXaGaey4kaSIaaGynai abgUcaRiaadMhaaSqabaaakeaacaaIXaGaaGioaaaaaeaacaWLjaGa aCzcaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaadIhacqGH9aqpdaWcaaqaaiabgkHiTiaaigdacqGH XcqSdaGcaaqaaiaaiAdacqGHRaWkcaWG5baaleqaaaGcbaGaaG4maa aaaeaacaWLjaGaaCzcaiaaxMaacaWLjaGaaGPaVlaaykW7cqGH9aqp daWcaaqaamaakaaabaGaaGOnaiabgUcaRiaadMhaaSqabaGccqGHsi slcaaIXaaabaGaaG4maaaacaWLjaGaaCzcamaadmaabaGaeSynIeLa amyEaiabgwMiZkabgkHiTiaaiAdacqGHshI3caWG5bGaey4kaSIaaG OnaiabgwMiZkaaicdaaiaawUfacaGLDbaaaeaacqGH0icxcaqGMbGa aeiiaiaabMgacaqGZbGaaeiiaiaab+gacaqGUbGaaeiDaiaab+gaca qGSaGaaeiiaiaabshacaqGObGaaeyzaiaabkhacaqGLbGaaeOyaiaa bMhacaqGGaGaaeOCaiaabggacaqGUbGaae4zaiaabwgacaqGGaGaae OzaiaabccacaqG9aGaaeiiaiaabUfacqGHsislcaqG1aGaaeilaiaa bccacqGHEisPcaqGPaGaaeOlaaqaaiaabYeacaqGLbGaaeiDaiaabc cacaqG1bGaae4CaiaabccacaqGKbGaaeyzaiaabAgacaqGPbGaaeOB aiaabwgacaqGGaGaae4zaiaabQdacaqGGaGaae4waiabgkHiTiaabw dacaqGSaGaaeiiaiabg6HiLkaabMcacqGHsgIRcaqGsbWaaSbaaSqa aiaabUcaaeqaaOGaaeiiaiaabggacaqGZbaabaGaaCzcaiaaxMaaca WLjaGaaGPaVlaadEgadaqadaqaaiaadMhaaiaawIcacaGLPaaacqGH 9aqpdaWcaaqaamaakaaabaWaaeWaaeaacaWG5bGaey4kaSIaaGOnaa GaayjkaiaawMcaaaWcbeaakiabgkHiTiaaigdaaeaacaaIZaaaaaqa aiaad6eacaWGVbGaam4DaiaacYcacaaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 daqadaqaaiaadEgacaWGVbGaamOzaaGaayjkaiaawMcaamaabmaaba GaamiEaaGaayjkaiaawMcaaiabg2da9iaadEgadaqadaqaaiaadAga daqadaqaaiaadIhaaiaawIcacaGLPaaaaiaawIcacaGLPaaaaeaaca WLjaGaaCzcaiaaxMaacaWLjaGaeyypa0Jaam4zamaabmaabaGaaeyo aiaabIhadaahaaWcbeqaaiaabkdaaaGccaqGGaGaae4kaiaabccaca qG2aGaaeiEaiabgkHiTiaabwdaaiaawIcacaGLPaaaaeaacaWLjaGa aCzcaiaaxMaacaWLjaGaeyypa0ZaaSaaaeaadaGcaaqaamaabmaaba GaaeyoaiaabIhadaahaaWcbeqaaiaabkdaaaGccaqGGaGaae4kaiaa bccacaqG2aGaaeiEaiabgkHiTiaabwdaaiaawIcacaGLPaaacqGHRa WkcaaI2aaaleqaaOGaeyOeI0IaaGymaaqaaiaaiodaaaaabaGaaCzc aiaaxMaacaWLjaGaaCzcaiabg2da9maalaaabaWaaOaaaeaadaqada qaaiaabMdacaqG4bWaaWbaaSqabeaacaqGYaaaaOGaaeiiaiaabUca caqGGaGaaeOnaiaabIhacqGHRaWkcaaIXaaacaGLOaGaayzkaaaale qaaOGaeyOeI0IaaGymaaqaaiaaiodaaaaabaGaaCzcaiaaxMaacaWL jaGaaCzcaiabg2da9maalaaabaWaaOaaaeaadaqadaqaaiaaiodaca WG4bGaey4kaSIaaGymaaGaayjkaiaawMcaamaaCaaaleqabaGaaGOm aaaaaeqaaOGaeyOeI0IaaGymaaqaaiaaiodaaaaabaGaaCzcaiaaxM aacaWLjaGaaCzcaiabg2da9maalaaabaGaaG4maiaadIhacqGHRaWk caaIXaGaeyOeI0IaaGymaaqaaiaaiodaaaGaeyypa0JaamiEaaqaai aadgeacaWGUbGaamizaiaacYcaaeaacaWLjaGaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8+aaeWaaeaacaWGMbGaam4BaiaadEgaaiaawIcacaGLPaaa daqadaqaaiaadMhaaiaawIcacaGLPaaacqGH9aqpcaWGMbWaaeWaae aacaWGNbWaaeWaaeaacaWG5baacaGLOaGaayzkaaaacaGLOaGaayzk aaaabaGaaCzcaiaaxMaacaWLjaGaaCzcaiabg2da9iaadAgadaqada qaamaalaaabaWaaOaaaeaadaqadaqaaiaadMhacqGHRaWkcaaI2aaa caGLOaGaayzkaaaaleqaaOGaeyOeI0IaaGymaaqaaiaaiodaaaaaca GLOaGaayzkaaaabaGaaCzcaiaaxMaacaWLjaGaaCzcaiabg2da9iaa bMdadaqadaqaamaalaaabaWaaOaaaeaadaqadaqaaiaadMhacqGHRa WkcaaI2aaacaGLOaGaayzkaaaaleqaaOGaeyOeI0IaaGymaaqaaiaa iodaaaaacaGLOaGaayzkaaWaaWbaaSqabeaacaqGYaaaaOGaaeiiai aabUcacaqGGaGaaeOnamaabmaabaWaaSaaaeaadaGcaaqaamaabmaa baGaamyEaiabgUcaRiaaiAdaaiaawIcacaGLPaaaaSqabaGccqGHsi slcaaIXaaabaGaaG4maaaaaiaawIcacaGLPaaacqGHsislcaqG1aaa baGaaCzcaiaaxMaacaWLjaGaaCzcaiabg2da9iaaiMdadaqadaqaam aalaaabaGaamyEaiabgUcaRiaaiAdacqGHsislcaaIYaWaaOaaaeaa caWG5bGaey4kaSIaaGOnaaWcbeaakiabgUcaRiaaigdaaeaacaaI5a aaaaGaayjkaiaawMcaaiabgUcaRiaaikdadaGcaaqaamaabmaabaGa amyEaiabgUcaRiaaiAdaaiaawIcacaGLPaaaaSqabaGccqGHsislca aIYaGaeyOeI0IaaGynaaqaaiaaxMaacaWLjaGaaCzcaiaaxMaacqGH 9aqpcaWG5bGaey4kaSIaaGOnaiabgkHiTiaaikdadaGcaaqaaiaadM hacqGHRaWkcaaI2aaaleqaaOGaey4kaSIaaGymaiabgUcaRiaaikda daGcaaqaamaabmaabaGaamyEaiabgUcaRiaaiAdaaiaawIcacaGLPa aaaSqabaGccqGHsislcaaIYaGaeyOeI0IaaGynaaqaaiaaxMaacaaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7daqadaqaaiaadAgacaWGVbGaam4zaaGa ayjkaiaawMcaamaabmaabaGaamyEaaGaayjkaiaawMcaaiabg2da9i aadMhaaeaacqGH0icxcaWLjaGaaCzcaiaaxMaacaaMc8UaaGPaVlaa dEgacaWGVbGaamOzaiabg2da9iaadMeadaWgaaWcbaGaamOuaaqaba GccaaMc8Uaamyyaiaad6gacaWGKbGaaGPaVlaadAgacaWGVbGaam4z aiabg2da9iaadMeadaWgaaWcbaWaamWaaeaacqGHsislcaaI1aGaai ilaiabg6HiLcGaay5waiaaw2faaaqabaaakeaacaqGibGaaeyzaiaa b6gacaqGJbGaaeyzaiaabYcacaqGGaGaaeOzaiaabccacaqGPbGaae 4CaiaabccacaqGPbGaaeOBaiaabAhacaqGLbGaaeOCaiaabshacaqG PbGaaeOyaiaabYgacaqGLbGaaeiiaiaabggacaqGUbGaaeizaiaabc cacaqG0bGaaeiAaiaabwgacaqGGaGaaeyAaiaab6gacaqG2bGaaeyz aiaabkhacaqGZbGaaeyzaiaabccacaqGVbGaaeOzaiaabccacaqGMb GaaeiiaiaabMgacaqGZbGaaeiiaiaabEgacaqGPbGaaeODaiaabwga caqGUbGaaeiiaiaabkgacaqG5baabaGaaGPaVlaaykW7caaMc8UaaG PaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWGMbWaaWba aSqabeaacqGHsislcaaIXaaaaOWaaeWaaeaacaWG5baacaGLOaGaay zkaaGaeyypa0Jaam4zamaabmaabaGaamyEaaGaayjkaiaawMcaaiab g2da9maalaaabaWaaOaaaeaacaWG5bGaey4kaSIaaGOnaaWcbeaaki abgkHiTiaaigdaaeaacaaIZaaaaiaac6caaaaa@FB77@

Q.10

Let f :X→Y be an invertible function.Show that f has unique inverse.

Ans

Let f: XY be an invertible function.Also, suppose f has two inverses (say g1 and g2)Then, for all yY, we have:fog1y=IYy=fog2y    fg1y=fg2y    g1y=g2yf is invertiblef is oneone          g1=g2g is oneoneHence, f has a unique inverse.

Q.11

Consider f : {1,2,3} {a, b, c} given by f (1)=a, f(2)=band f (3)=c. Find f1and show that (f1)1=f.

Ans

Function f: {1, 2, 3}{a, b, c} is given by,f(1) = a, f(2) = b, and f(3) = cIf we define g: {a, b, c}{1, 2, 3} as g(a) = 1, g(b) = 2, g(c) = 3, then we have:(fog)(a)=f(g(a))=f(1)=a(fog)(b)=f(g(b))=f(2)=b(fog)(c)=f(g(c))=f(3)=cand(gof)(1)=g(f(1))=g(a)=1(gof)(2)=g(f(2))=g(b)=2(gof)(3)=g(f(3))=g(c)=3gof=IX and fog=IY, where X={1,2,3} and Y={a,b,c}.Thus, the inverse of f exists and f1 = g.f1:{a,b,c}{1,2,3} is given by,f1(a)=1,f1(b)=2,f1(c)=3 The inverse of f1 The inverse of gWe define, h:{1,2,3}{a,b,c}  ash(1) = a, h(2) = b, h(3) = c, then we have:(goh)(1)=g(h(1))=g(a)=1(goh)(2)=g(h(2))=g(b)=2(goh)(3)=g(h(3))=g(c)=3and(hog)(a)=h(g(a))=h(1)=a(hog)(b)=h(g(b))=h(2)=b(hog)(c)=h(g(c))=h(3)=cgoh=IXand  hog=IY,where X={1,2,3} and={a,b,c}.Thus, the inverse of g exists andg1 = h(f1)1= h.It can be noted that h = f.Hence, (f1)1 = f.

Q.12

Let f:XY be aninvertible function. Show that the inverseof f1 is f,i.e., (f1)1=f.

Ans

Let f: XY be an invertible function.Then, there exists a function g: YX such that gof = IXand fog = IY.Here, f1 = g.Now, gof = IXand fog = IYf1of = IXand fof1= IYHence, f1: YX is invertible and f is the inverse of f1i.e., (f1)1 = f.

Q.13

If f: RR be given by, f(x)=(3x3)13then f of (x) is(A)x13  (B)x3(C) x(D) (3x3).

Ans

f: RR is given as  f(x)=(3x3)13fof(x)=f(f(x))      =f{(3x3)13}      =[3{(3x3)13}3]13      ={3(3x3)}13      =(33+x3)13  fof(x)=xThe correct answer is (C).

Q.14

Let  f:R{43}R be a function defined as f(x) =4x3x+4.The inverse of f is map g: R ange fR{43} given by(A)g(y)=3y34y(B)g(y)=4y43y(C)g(y)=4y34y(D)g(y)=3y43y

Ans

It is given thatf:R{43}Ris defined as f(x)=4x3x+4.Lety be an arbitrary element of Range f.Then, there exists xR{43}suchthaty=f(x).    y=4x3x+43xy+4y=4x3xy+4x=4yx(43y)=4y        x=4y43yLet us define g: Range  fR{43}  asg(y)=4y43yNow,(gof)(x)=g(f(x))        =g(4x3x+4)        =4(4x3x+4)43(4x3x+4)        =16x12x+1612x        =xAnd,(fog)(y)=f(g(y))      =f(4y43y)      =4(4y43y)3(4y43y)+4      =16y12y+1612y      =16y16      =ygof=IR{43}  and  fog=IRangefThus, g is the inverse of f i.e., f1 = g.Hence, the inverse of f is the map g: Range,  RR{43},which is given by  g(y)=4y43y.The correct answer is B.

Please register to view this section