NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.2

Scientific disciplines including Physics, Chemistry, Biology, Mathematics, etc., have been  subjects of interest to the human race since the beginning of time. Among the prominent scientific disciplines, Mathematics particularly has a long-drawn history which can be traced back to many early civilizations. The reason is that Mathematics holds great importance in the ordering and smooth functioning of human activities as well as of a majority of human-made or human-controlled operations. Mathematics is thus a critical academic discipline that is taught to students from the beginning of their education.It is also composed of a variety of sub-disciplines, which are vital knowledge systems in themselves. Additionally, Mathematics also has an immeasurable potential for research and experimentation, which makes it ideal for young learners. Within the NCERT academic curriculum, students who wish to pursue Mathematics in greater depth opt for the Mathematics Stream in Classes 11 and 12. Therefore, it goes without saying that Mathematics is an inseparable part of the prescribed NCERT academic curriculum for the students of Class 12. The academic curriculum prescribed by NCERT for Class 12 is aimed at laying a strong foundation in the fundamental sub-disciplines of Mathematics to prepare students for their future endeavours.

This implies the importance of easy access to reliable learning resources like the NCERT Solutions as trustworthy reference materials to facilitate self-learning. The prescribed NCERT academic syllabus for Mathematics in Class 12 is made up of thirteen extensively researched chapters. These chapters have been organised into an ordered sequence for ease of learning. Chapter 9 is titled Differential Equations. Ex 9.2 Class 12 is the second comprehensive assessment, which is a part of this chapter. It has to be objectively comprehended and thoroughly practised to succeed in the examination.

The Extramarks learning platform has compiled the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 to facilitate the learning process of students. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 have been compiled in collaboration with renowned subject experts to ensure great quality content. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 could be effectively utilised as an efficient resource for self-study and revision by students. The nuances of the latest updated NCERT academic syllabus for Mathematics have been carefully considered in the preparation of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2.

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations (Ex 9.2) Exercise 9.2

Widespread apprehension and indecisiveness concerning the theme of Differential Equations have been observed among students for a long time. This attitude has been a major cause of concern for students and their instructors alike. Students often find the subject of Differential Equations challenging and as a consequence, may lose interest in it. Differential Equations can be quite an interesting theme if one has the necessary conceptual clarity to complement their efforts to understand the subject. It is also clear that Differential Equations and Exercise 9.2 for Class 12 are critical components of the mathematics curriculum determined for Class 12.As a result, the NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.2 can be useful in easing students’ concerns.. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 have been designed by Extramarks keeping the general concerns and queries of students and teachers in view. The easy-to-understand format of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 can prove crucial in aiding and encouraging self-learning among students.

Differential Equations are a basic and vital part of the wider academic arena of Mathematics as a subject of research. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 provide clear-cut and simple solutions to Exercise 9.2 of the chapter on Differential Equations. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 have been compiled with careful consideration of the methods of classroom teaching. Therefore, the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 do not exhibit major discrepancies between classroom lectures and the compiled solutions.

Extramarks is committed to providing dependable, genuine, and descriptive NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 to motivate students to engage with the themes of Differential Equations by moving a step forward from their previous apprehensions. Ex 9.2 Class 12 is a well-organized and logically-structured format of the calculations provided as a part of the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.2 would help students adequately abide by the ideal format for problem-solving and would clarify their doubts step-by-step.

Important Topics Covered in NCERT Solution Class 12 Chapter 9 (Exercise 9.2) 

Chapter 9 titled Differential Equations, covers a range of important topics, such as comprehensive questions asking students to verify whether the given function is a solution to the corresponding differential equation. Types of functions, namely implicit and explicit functions have also been covered. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 cover all the essential topics which are a part of Exercise 9.2 of Chapter 9. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 provide detailed, step-by-step solutions to the problems which comprise Exercise 9.2 Class 12. The formulae used to do the calculations have also been mentioned and covered in detail in order to ensure that students have total clarity about the logical sequence of the calculations. Extramarks is providing the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 to complement the hard work and perseverance of students.

Access NCERT Solutions for Class 12 Maths Chapter 9 – Permutations and Combinations

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Exercise 9.2

Differential Equations have often been perceived and upheld as a dynamic, complex and versatile academic theme within Mathematics. However, within the academic syllabus for Mathematics in Class 12 prescribed by the NCERT, the theme of Differential Equations occupies a prominent place. Differential Equations is indeed a theme comprising conceptually-rich content. This is why it is also regarded as an opening into a wider expanse of academic research in the field of Mathematics. Therefore, it is imperative for students who are looking forward to pursuing a career in Mathematics, to improve their conceptual clarity and comprehension of the theme of Differential Equations.

It is highly recommended that students continue with the regular and consistent practise of questions that are part of the theme of Differential Equations. This would be of great assistance in enhancing the retention abilities of students, which is essential to acquiring and retaining important formulas and their respective derivatives. In accordance with this, students must review and practise the exercises that are part of their textbook with the aid of quality reference material like the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2. Regular practise of NCERT Solutions for Class 12 Maths Chapter 9 Exercise 9.2 will help students achieve excellence in the topic of differential equations.

Through constant practise of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2, students can become adept at appropriately comprehending the problems presented to them. Accordingly, they would be able to construct an adequate response that caters to the demands of particular questions on the topic of Differential Equations. Students would be able to easily choose the right approach to the practical application of the formulae they have acquired and retained in order to solve questions.

The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 have been engineered in the form of dynamically consumable learning resources to aid students during the preparation for their exams. Therefore, the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 have been compiled very selectively through the inclusion of the most efficient ways of solving long-drawn problems related to the theme of Differential Equations.

Extramarks provides high-quality, authentic, and comprehensively explained NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2. These solutions are available through the Extramarks learning platform, are curated by reputed subject experts, and can act as a versatile learning resource for the students.

The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 have been compiled through immense efforts by Extramarks. The Extramarks learning platform has been cautiously working in order to ensure that the updates of the revised NCERT academic curriculum find a place in the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2. These solutions have been organised into an easy-to-understand and user-friendly framework to aid the self-learning of students. This has been done in a comprehensive manner for the convenience of students so that they can appropriately follow the logical sequence of calculations. It is vital for students to gain knowledge about and retain important formulae and their derivatives. It is also equally essential for them to be proficient in the practical application of this knowledge studied miscellaneously, in order to solve problems. This is a skill which can be achieved through continuous practise and revision. Therefore, Extramarks provides the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 as comprehensive and curated reference materials with quality content.

Extramarks is a reliable, reputed, and efficient learning platform. Extramarks provides high-quality, comprehensive, and easy-to-understand academic content like the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 to complement the efforts of students. Additionally, the Extramarks has other well-structured and well-researched content like the NCERT Solutions Class 1, NCERT Solutions Class 2, NCERT Solutions Class 3, NCERT Solutions Class 4, NCERT Solutions Class 5, NCERT Solutions Class 6, NCERT Solutions Class 7, NCERT Solutions Class 8, NCERT Solutions Class 9, NCERT Solutions Class 10, NCERT Solutions Class 11 and NCERT Solutions Class 12.

Benefits of NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.2 

Benefits of NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.2 

Differential Equations is a complex topic that contains a variety of information that must be dealt with in various ways and through various learning methods.While at the micro level, it is imperative for students to be familiar with important formulae and their respective derivatives and preferably have them in their memory, conceptual clarity at the holistic level is also mandatory. It is a difficult task to accommodate all of the students’ questions and doubts during classroom teaching sessions and to adequately respond to all of them.These situations may lead to the accumulation of unresolved doubts and queries, which may become a hindrance to attaining the necessary conceptual clarity. This deficiency may pose a significant challenge to students’ sincere efforts to perform well in their exams.

Therefore, the Extramarks learning platform is providing crucial learning resources like the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 to complement the guidance of teachers as well as the sincere efforts of students. The well-organised structure of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 prepared by Extramarks can be utilised by students to clarify their doubts by themselves through self-learning and regular practice.

The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 have been carefully crafted to ensure that students are able to appropriately follow the logical sequence of steps in long-drawn calculations. It is imperative for students to not only retain crucial formulas but also be able to practically apply these formulas to solving problems. This skill can be honed through consistent practise and focused revision methods.Therefore, Extramarks provides the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 as an easily accessible learning resource with quality content for the convenience of reference whenever required. Instead of searching everywhere for answers to complex Calculus problems, students can conveniently access practise material from the Extramarks website. The Extramarks website is committed to providing quality, versatile academic content, all in one place.

Q.1

Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: y = e x + 1 : y” – y’ = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeyEaiaabccacaqG9aGaaeiiaiaabwga daahaaWcbeqaaiaabIhaaaGccaqGRaGaaeiiaiaabgdacaaMc8UaaG PaVlaaxMaacaWLjaGaaGPaVlaabQdacaqGGaGaaCzcaiaaxMaacaqG GaGaaeyEaiaabEcacaqGNaGaaeiiaiaabobicaqGGaGaaeyEaiaabE cacaqGGaGaaeypaiaabccacaqGWaaaaaa@B232@

Ans

y = e x + 1 Differentiating w.r.t. x, we get y’ = e x ( i ) Differentiating equation ( i ) w.r.t. x, we get y” = e x Substituting values of y’ and y” in L.H.S. of given differential equation y” – y’ = 0, we get y” – y’ =e x – e x = 0 = R.H.S. Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq Gabeqaaa5gbaGaaeyEaiaabccacaqG9aGaaeiiaiaabwgadaahaaWc beqaaiaabIhaaaGccaqGGaGaae4kaiaabccacaqGXaaabaGaaeirai aabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG0bGa aeyAaiaabggacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabEhaca qGUaGaaeOCaiaab6cacaqG0bGaaeOlaiaabccacaqG4bGaaeilaiaa bccacaqG3bGaaeyzaiaabccacaqGNbGaaeyzaiaabshaaeaacaqG5b Gaae4jaiaabccacaqG9aGaaeiiaiaabwgadaahaaWcbeqaaiaabIha aaGccaWLjaGaaeOlaiaab6cacaqGUaWaaeWaaeaacaqGPbaacaGLOa GaayzkaaaabaGaaeiraiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGa aeyzaiaab6gacaqG0bGaaeyAaiaabggacaqG0bGaaeyAaiaab6gaca qGNbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaa b+gacaqGUbGaaeiiamaabmaabaGaaeyAaaGaayjkaiaawMcaaiaabc cacaqG3bGaaeOlaiaabkhacaqGUaGaaeiDaiaab6cacaqGGaGaaeiE aiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0b aabaGaaeyEaiaabEcacaqGNaGaaeiiaiaab2dacaqGGaGaaeyzamaa CaaaleqabaGaaeiEaaaaaOqaaiaabofacaqG1bGaaeOyaiaabohaca qG0bGaaeyAaiaabshacaqG1bGaaeiDaiaabMgacaqGUbGaae4zaiaa bccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabohacaqGGaGaae 4BaiaabAgacaqGGaGaaeyEaiaabEcacaqGGaGaaeyyaiaab6gacaqG KbGaaeiiaiaabMhacaqGNaGaae4jaiaabccacaqGPbGaaeOBaiaabc cacaqGmbGaaeOlaiaabIeacaqGUaGaae4uaiaab6cacaqGGaGaae4B aiaabAgacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGa GaaeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6ga caqG0bGaaeyAaiaabggacaqGSbGaaeiiaaqaaiaabwgacaqGXbGaae yDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabMhacaqG NaGaae4jaiaabccacaqGTaGaaeiiaiaabMhacaqGNaGaaeiiaiaab2 dacaqGGaGaaeimaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4z aiaabwgacaqG0baabaGaaeyEaiaabEcacaqGNaGaaeiiaiaab2caca qGGaGaaeyEaiaabEcacaqGGaGaaeypaiacycyGLbWaiGjGCaaaleqc ycyaiGjGcGaMagiEaaaakiaabccacaqGTaGaaeiiaiaabwgadaahaa WcbeqaaiaabIhaaaGccaqGGaGaaeypaiaabccacaqGWaGaaeiiaiaa b2dacaqGGaGaaeOuaiaab6cacaqGibGaaeOlaiaabofacaqGUaaaba GaaeivaiaabIgacaqG1bGaae4CaiaabYcacaqG0bGaaeiAaiaabwga caqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeOzai aabwhacaqGUbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGa aeyAaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaaqaaiaabsgacaqGPbGaaeOzai aabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGa aeiBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgaca qGVbGaaeOBaiaab6caaaaa@4B29@

Q.2

  Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: y = x 2 +2x + C : y’ –2x –2 = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeyEaiaabccacaqG9aGaaeiiaiaabIha daahaaWcbeqaaiaabkdaaaGccaqGRaGaaeOmaiaabIhacaqGGaGaae 4kaiaabccacaqGdbGaaGPaVlaaykW7caaMc8UaaCzcaiaabQdacaqG GaGaaCzcaiaaxMaacaqGGaGaaeyEaiaabEcacaqGGaGaae4eGiaabk dacaqG4bGaaeiiaiaabobicaqGYaGaaeiiaiaab2dacaqGGaGaaeim aaaaaa@B53B@

Ans

y = x 2 +2x + C Differentiating w.r.t. x, we get y’ = 2x + 2 Substituting values of y’ in L.H.S. of given differential equation y’ –2x –2 = 0, we get y’ – 2x –2 = 2x + 2 –2x –2 = 0 = R.H.S. Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabMhacaqGGaGaaeypaiaabccacaqG4bWaaWbaaSqabeaa caqGYaaaaOGaae4kaiaabkdacaqG4bGaaeiiaiaabUcacaqGGaGaae 4qaaqaaiaabseacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwga caqGUbGaaeiDaiaabMgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zai aabccacaqG3bGaaeOlaiaabkhacaqGUaGaaeiDaiaab6cacaqGGaGa aeiEaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgaca qG0baabaGaaeyEaiaabEcacaqGGaGaaeypaiaabccacaqGYaGaaeiE aiaabccacaqGRaGaaeiiaiaabkdaaeaacaqGtbGaaeyDaiaabkgaca qGZbGaaeiDaiaabMgacaqG0bGaaeyDaiaabshacaqGPbGaaeOBaiaa bEgacaqGGaGaaeODaiaabggacaqGSbGaaeyDaiaabwgacaqGZbGaae iiaiaab+gacaqGMbGaaeiiaiaabMhacaqGNaGaaeiiaiaabMgacaqG UbGaaeiiaiaabYeacaqGUaGaaeisaiaab6cacaqGtbGaaeOlaiaabc cacaqGVbGaaeOzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOB aiaabccacaqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLb GaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqGGaaabaGaaeyzaiaa bghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae yEaiaabEcacaqGGaGaae4eGiaabkdacaqG4bGaaeiiaiaabobicaqG YaGaaeiiaiaab2dacaqGGaGaaeimaiaabYcacaqGGaGaae4Daiaabw gacaqGGaGaae4zaiaabwgacaqG0baabaGaaeiiaiaabMhacaqGNaGa aeiiaiaab2cacaqGGaGaaeOmaiaabIhacaqGGaGaae4eGiaabkdaca qGGaGaaeypaiaabccacaqGYaGaaeiEaiaabccacaqGRaGaaeiiaiaa bkdacaqGGaGaae4eGiaabkdacaqG4bGaaeiiaiaabobicaqGYaaaba GaaCzcaiaaxMaacaqG9aGaaeiiaiaabcdacaqGGaGaaeypaiaabcca caqGsbGaaeOlaiaabIeacaqGUaGaae4uaiaab6caaeaacaqGubGaae iAaiaabwhacaqGZbGaaeilaiaabshacaqGObGaaeyzaiaabccacaqG NbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGaaeyDaiaab6 gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGPbGaae4C aiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4Caiaab+gacaqGSb GaaeyDaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae4BaiaabAga caqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabogacaqGVbGaaeOCai aabkhacaqGLbGaae4CaiaabchacaqGVbGaaeOBaiaabsgacaqGPbGa aeOBaiaabEgacaqGGaaabaGaaeizaiaabMgacaqGMbGaaeOzaiaabw gacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqGSbGaaeii aiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUb GaaeOlaaaaaa@1803@

Q.3

  Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation:    y = cos x + C : y’ + sinx = 0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeyEaiaabccacaqG9aGaaeiiaiaaboga caqGVbGaae4CaiaabccacaqG4bGaaeiiaiaabUcacaqGGaGaae4qai aaykW7caaMc8UaaGPaVlaaxMaacaaMc8UaaGPaVlaabQdacaqGGaGa aCzcaiaaxMaacaqGGaGaaeyEaiaabEcacaqGGaGaae4kaiaabccaca qGZbGaaeyAaiaab6gacaqG4bGaaeiiaiaab2dacaqGGaGaaeimaaaa aa@B923@

Ans

y = cos x + C Differentiating w.r.t. x, we get y’ = –sinx Substituting values of y’ in L.H.S. of given differential equation y’ + sinx = 0, we get y’ + sinx = –sinx + sinx = 0 = R.H.S. Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabMhacaqGGaGaaeypaiaabccacaqGJbGaae4Baiaaboha caqGGaGaaeiEaiaabccacaqGRaGaaeiiaiaaboeaaeaacaqGebGaae yAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqG PbGaaeyyaiaabshacaqGPbGaaeOBaiaabEgacaqGGaGaae4Daiaab6 cacaqGYbGaaeOlaiaabshacaqGUaGaaeiiaiaabIhacaqGSaGaaeii aiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaabMhaca qGNaGaaeiiaiaab2dacaqGGaGaae4eGiaabohacaqGPbGaaeOBaiaa bIhaaeaacaqGtbGaaeyDaiaabkgacaqGZbGaaeiDaiaabMgacaqG0b GaaeyDaiaabshacaqGPbGaaeOBaiaabEgacaqGGaGaaeODaiaabgga caqGSbGaaeyDaiaabwgacaqGZbGaaeiiaiaab+gacaqGMbGaaeiiai aabMhacaqGNaGaaeiiaiaabMgacaqGUbGaaeiiaiaabYeacaqGUaGa aeisaiaab6cacaqGtbGaaeOlaiaabccacaqGVbGaaeOzaiaabccaca qGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGKbGaaeyAaiaa bAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaae yyaiaabYgacaqGGaaabaGaaeyzaiaabghacaqG1bGaaeyyaiaabsha caqGPbGaae4Baiaab6gacaqGGaGaaeyEaiaabEcacaqGGaGaae4kai aabccacaqGZbGaaeyAaiaab6gacaqG4bGaaeiiaiaab2dacaqGGaGa aeimaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgaca qG0baabaGaaeyEaiaabEcacaqGGaGaae4kaiaabccacaqGZbGaaeyA aiaab6gacaqG4bGaaeiiaiaab2dacaqGGaGaae4eGiaabohacaqGPb GaaeOBaiaabIhacaqGGaGaae4kaiaabccacaqGZbGaaeyAaiaab6ga caqG4bGaaeiiaiaab2dacaqGGaGaaeimaiaabccacaqG9aGaaeiiai aabkfacaqGUaGaaeisaiaab6cacaqGtbGaaeOlaaqaaiaabsfacaqG ObGaaeyDaiaabohacaqGSaGaaeiDaiaabIgacaqGLbGaaeiiaiaabE gacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabAgacaqG1bGaaeOB aiaabogacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabMgacaqGZb GaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaae4BaiaabYga caqG1bGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOzai aabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4yaiaab+gacaqGYbGa aeOCaiaabwgacaqGZbGaaeiCaiaab+gacaqGUbGaaeizaiaabMgaca qGUbGaae4zaiaabccaaeaacaqGKbGaaeyAaiaabAgacaqGMbGaaeyz aiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqGGa GaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6ga caqGUaaaaaa@189F@

Q.4

  Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: y = 1 + x 2 : y’ = xy 1 + x 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeyEaiaabccacaqG9aGaaeiiamaakaaa baGaaeymaiaabccacaqGRaGaaeiiaiaabIhadaahaaWcbeqaaiaabk daaaaabeaakiaaykW7caaMc8UaaGPaVlaaxMaacaWLjaGaaGPaVlaa ykW7caqG6aGaaeiiaiaaxMaacaWLjaGaaeiiaiaabMhacaqGNaGaae iiaiaab2dacaqGGaWaaSaaaeaacaqG4bGaaeyEaaqaaiaabgdacaqG GaGaae4kaiaabccacaqG4bWaaWbaaSqabeaacaqGYaaaaaaaaaaa@B755@

Ans

y = 1 + x 2 Differentiating w.r.t. x, we get y’ = x 1 + x 2 Substituting values of y in R.H.S. of given differential equation y’ = xy 1 + x 2 , we get R.H.S. = xy 1 + x 2 = x( 1 + x 2 ) 1 + x 2 = x 1 + x 2 = y’ = L.H.S. Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabMhacaqGGaGaaeypaiaabccadaGcaaqaaiaabgdacaqG GaGaae4kaiaabccacaqG4bWaaWbaaSqabeaacaqGYaaaaaqabaaake aacaqGebGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOB aiaabshacaqGPbGaaeyyaiaabshacaqGPbGaaeOBaiaabEgacaqGGa Gaae4Daiaab6cacaqGYbGaaeOlaiaabshacaqGUaGaaeiiaiaabIha caqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaa qaaiaabMhacaqGNaGaaeiiaiaab2dacaqGGaWaaSaaaeaacaqG4baa baWaaOaaaeaacaqGXaGaaeiiaiaabUcacaqGGaGaaeiEamaaCaaale qabaGaaeOmaaaaaeqaaaaaaOqaaiaabofacaqG1bGaaeOyaiaaboha caqG0bGaaeyAaiaabshacaqG1bGaaeiDaiaabMgacaqGUbGaae4zai aabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabohacaqGGaGa ae4BaiaabAgacaqGGaGaaeyEaiaabccacaqGPbGaaeOBaiaabccaca qGsbGaaeOlaiaabIeacaqGUaGaae4uaiaab6cacaqGGaGaae4Baiaa bAgacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaae izaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG 0bGaaeyAaiaabggacaqGSbGaaeiiaaqaaiaabwgacaqGXbGaaeyDai aabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabMhacaqGNaGa aeiiaiaab2dacaqGGaWaaSaaaeaacaqG4bGaaeyEaaqaaiaabgdaca qGGaGaae4kaiaabccacaqG4bWaaWbaaSqabeaacaqGYaaaaaaakiaa bYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0baaba GaaeOuaiaab6cacaqGibGaaeOlaiaabofacaqGUaGaaeiiaiaab2da caqGGaWaaSaaaeaacaqG4bGaaeyEaaqaaiaabgdacaqGGaGaae4kai aabccacaqG4bWaaWbaaSqabeaacaqGYaaaaaaaaOqaaiaaxMaacaaM c8UaaeypaiaabccadaWcaaqaaiaabIhadaqadaqaamaakaaabaGaae ymaiaabccacaqGRaGaaeiiaiaabIhadaahaaWcbeqaaiaabkdaaaaa beaaaOGaayjkaiaawMcaaaqaaiaabgdacaqGGaGaae4kaiaabccaca qG4bWaaWbaaSqabeaacaqGYaaaaaaaaOqaaiaaxMaacaaMc8UaaGPa VlaaykW7caqG9aGaaeiiamaalaaabaGaaeiEaaqaamaakaaabaGaae ymaiaabccacaqGRaGaaeiiaiaabIhadaahaaWcbeqaaiaabkdaaaaa beaaaaaakeaacaWLjaGaaGPaVlaaykW7caaMc8Uaaeypaiaabccaca qG5bGaae4jaiaabccacaqG9aGaaeiiaiaabYeacaqGUaGaaeisaiaa b6cacaqGtbGaaeOlaaqaaiaabsfacaqGObGaaeyDaiaabohacaqGSa GaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwga caqGUbGaaeiiaiaabAgacaqG1bGaaeOBaiaabogacaqG0bGaaeyAai aab+gacaqGUbGaaeiiaiaabMgacaqGZbGaaeiiaiaabshacaqGObGa aeyzaiaabccacaqGZbGaae4BaiaabYgacaqG1bGaaeiDaiaabMgaca qGVbGaaeOBaiaabccacaqGVbGaaeOzaiaabccacaqG0bGaaeiAaiaa bwgacaqGGaGaae4yaiaab+gacaqGYbGaaeOCaiaabwgacaqGZbGaae iCaiaab+gacaqGUbGaaeizaiaabMgacaqGUbGaae4zaiaabccaaeaa caqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBai aabshacaqGPbGaaeyyaiaabYgacaqGGaGaaeyzaiaabghacaqG1bGa aeyyaiaabshacaqGPbGaae4Baiaab6gacaqGUaaaaaa@315E@

Q.5

  Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: y = Ax : xy’ = y ( x 0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeyEaiaabccacaqG9aGaaeiiaiaabgea caqG4bGaaGPaVlaaykW7caaMc8UaaCzcaiaaxMaacaaMc8UaaGPaVl aaxMaacaaMc8UaaGPaVlaaykW7caqG6aGaaeiiaiaaxMaacaWLjaGa aeiiaiaabIhacaqG5bGaae4jaiaabccacaqG9aGaaeiiaiaabMhaca WLjaGaaCzcamaabmaabaGaaeiEaiaabccacqGHGjsUcaqGGaGaaeim aaGaayjkaiaawMcaaaaaaa@BCAB@

Ans

y = Ax Differentiating w.r.t. x, we get y’ = A Substituting values of y’ in L.H.S. of given differential equation xy’ = y, we get L.H.S. = xy’ = x( A ) = Ax = y = R.H.S. Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabMhacaqGGaGaaeypaiaabccacaqGbbGaaeiEaaqaaiaa bseacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaae iDaiaabMgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqG 3bGaaeOlaiaabkhacaqGUaGaaeiDaiaab6cacaqGGaGaaeiEaiaabY cacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0baabaGa aeyEaiaabEcacaqGGaGaaeypaiaabccacaqGbbaabaGaae4uaiaabw hacaqGIbGaae4CaiaabshacaqGPbGaaeiDaiaabwhacaqG0bGaaeyA aiaab6gacaqGNbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLb Gaae4CaiaabccacaqGVbGaaeOzaiaabccacaqG5bGaae4jaiaabcca caqGPbGaaeOBaiaabccacaqGmbGaaeOlaiaabIeacaqGUaGaae4uai aab6cacaqGGaGaae4BaiaabAgacaqGGaGaae4zaiaabMgacaqG2bGa aeyzaiaab6gacaqGGaGaaeizaiaabMgacaqGMbGaaeOzaiaabwgaca qGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqGSbGaaeiiaaqa aiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUb GaaeiiaiaabIhacaqG5bGaae4jaiaabccacaqG9aGaaeiiaiaabMha caqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaa qaaiaabYeacaqGUaGaaeisaiaab6cacaqGtbGaaeOlaiaabccacaqG 9aGaaeiiaiaabIhacaqG5bGaae4jaiaabccaaeaacaWLjaGaaeypai aabccacaqG4bWaaeWaaeaacaqGbbaacaGLOaGaayzkaaaabaGaaCzc aiaab2dacaqGGaGaaeyqaiaabIhacaqGGaGaaeypaiaabccacaqG5b Gaaeiiaiaab2dacaqGGaGaaeOuaiaab6cacaqGibGaaeOlaiaabofa caqGUaaabaGaaeivaiaabIgacaqG1bGaae4CaiaabYcacaqG0bGaae iAaiaabwgacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqG GaGaaeOzaiaabwhacaqGUbGaae4yaiaabshacaqGPbGaae4Baiaab6 gacaqGGaGaaeyAaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeii aiaabohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUb Gaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabcca caqGJbGaae4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Bai aab6gacaqGKbGaaeyAaiaab6gacaqGNbGaaeiiaaqaaiaabsgacaqG PbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabM gacaqGHbGaaeiBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiD aiaabMgacaqGVbGaaeOBaiaab6caaaaa@0A6F@

Q.6

Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: y = x sinx: xy’ = y + x x 2 – y 2 ( x0and x > y or x < –y ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeyEaiaabccacaqG9aGaaeiiaiaabIha caqGGaGaae4CaiaabMgacaqGUbGaaeiEaiaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaeOoaiaabccacaqGGaGaaeiEaiaabMhacaqGNaGa aeiiaiaab2dacaqGGaGaaeyEaiaabccacaqGRaGaaeiiaiaabIhaca qGGaWaaOaaaeaacaqG4bWaaWbaaSqabeaacaqGYaaaaOGaaeiiaiaa bobicaqGGaGaaeyEamaaCaaaleqabaGaiGgGbkdaaaaabeaakiaayk W7caaMc8+aaeWaaeaacaqG4bGaeyiyIKRaaeimaiaaykW7caqGHbGa aeOBaiaabsgacaqGGaGaaeiEaiaabccacaqG+aGaaeiiaiaabMhaca qGGaGaae4BaiaabkhacaqGGaGaaeiEaiaabccacaqG8aGaaeiiaiaa bobicaqG5baacaGLOaGaayzkaaaaaaa@D43D@

Ans

y = xsin x Differentiating w.r.t. x, we get y’ = xcos x + sinx Substituting values of y’ in L.H.S. of given differential equation xy’ = y + x x 2 – y 2 , we get L.H.S. = xy’ = x( xcosx + sinx ) = x 2 cosx + xsinx R.H.S. = xsinx + x x 2 ( xsinx ) 2 = xsinx + x 2 1 – sin 2 x = xsinx + x 2 cosx So, L.H.S. = R.H.S. Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabMhacaqGGaGaaeypaiaabccacaqG4bGaae4CaiaabMga caqGUbGaaeiiaiaabIhaaeaacaqGebGaaeyAaiaabAgacaqGMbGaae yzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabshacaqG PbGaaeOBaiaabEgacaqGGaGaae4Daiaab6cacaqGYbGaaeOlaiaabs hacaqGUaGaaeiiaiaabIhacaqGSaGaaeiiaiaabEhacaqGLbGaaeii aiaabEgacaqGLbGaaeiDaaqaaiaabMhacaqGNaGaaeiiaiaab2daca qGGaGaaeiEaiaabogacaqGVbGaae4CaiaabccacaqG4bGaaeiiaiaa bUcacaqGGaGaae4CaiaabMgacaqGUbGaaeiEaaqaaiaabofacaqG1b GaaeOyaiaabohacaqG0bGaaeyAaiaabshacaqG1bGaaeiDaiaabMga caqGUbGaae4zaiaabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzai aabohacaqGGaGaae4BaiaabAgacaqGGaGaaeyEaiaabEcacaqGGaGa aeyAaiaab6gacaqGGaGaaeitaiaab6cacaqGibGaaeOlaiaabofaca qGUaGaaeiiaiaab+gacaqGMbGaaeiiaiaabEgacaqGPbGaaeODaiaa bwgacaqGUbGaaeiiaiaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaae OCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiBaiaabccaaeaa caqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBai aabccacaqG4bGaaeyEaiaabEcacaqGGaGaaeypaiaabccacaqG5bGa aeiiaiaabUcacaqGGaGaaeiEamaakaaabaGaaeiEamaaCaaaleqaba GaaeOmaaaakiaabccacaqGtaIaaeiiaiaabMhadaahaaWcbeqaaiaa bkdaaaaabeaakiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zai aabwgacaqG0baabaGaaeitaiaab6cacaqGibGaaeOlaiaabofacaqG UaGaaeiiaiaab2dacaqGGaGaaeiEaiaabMhacaqGNaGaaeiiaiaab2 dacaqGGaGaaeiEamaabmaabaGaaeiEaiaabogacaqGVbGaae4Caiaa bIhacaqGGaGaae4kaiaabccacaqGZbGaaeyAaiaab6gacaqG4baaca GLOaGaayzkaaaabaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG GaGaaeiiaiaabccacaqGGaGaaeiiaiaab2dacaqGGaGaaeiEamaaCa aaleqabaGaaeOmaaaakiaabogacaqGVbGaae4CaiaabIhacaqGGaGa ae4kaiaabccacaqG4bGaae4CaiaabMgacaqGUbGaaeiEaaqaaiaabk facaqGUaGaaeisaiaab6cacaqGtbGaaeOlaiaabccacaqG9aGaaeii aiaabIhacaqGZbGaaeyAaiaab6gacaqG4bGaaeiiaiaabUcacaqGGa GaaeiEamaakaaabaGaaeiEamaaCaaaleqabaGaaeOmaaaakiaabcca caqGtaIaaeiiamaabmaabaGaaeiEaiaabohacaqGPbGaaeOBaiaabI haaiaawIcacaGLPaaadaahaaWcbeqaaiaabkdaaaaabeaaaOqaaiaa bccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaae iiaiaabccacaqG9aGaaeiiaiaabIhacaqGZbGaaeyAaiaab6gacaqG 4bGaaeiiaiaabUcacaqGGaGaaeiEamaaCaaaleqabaGaaeOmaaaakm aakaaabaGaaeymaiaabccacaqGtaIaaeiiaiaabohacaqGPbGaaeOB amaaCaaaleqabaGaaeOmaaaakiaabIhaaSqabaaakeaacaqGGaGaae iiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG GaGaaeypaiaabccacaqG4bGaae4CaiaabMgacaqGUbGaaeiEaiaabc cacaqGRaGaaeiiaiaabIhadaahaaWcbeqaaiaabkdaaaGccaqGJbGa ae4BaiaabohacaqG4baabaGaae4uaiaab+gacaqGSaGaaeiiaiaabY eacaqGUaGaaeisaiaab6cacaqGtbGaaeOlaiaabccacaqG9aGaaeii aiaabkfacaqGUaGaaeisaiaab6cacaqGtbGaaeOlaaqaaiaabsfaca qGObGaaeyDaiaabohacaqGSaGaaeiDaiaabIgacaqGLbGaaeiiaiaa bEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabAgacaqG1bGaae OBaiaabogacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaabMgacaqG ZbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGZbGaae4BaiaabY gacaqG1bGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGVbGaaeOz aiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4yaiaab+gacaqGYb GaaeOCaiaabwgacaqGZbGaaeiCaiaab+gacaqGUbGaaeizaiaabMga caqGUbGaae4zaiaabccaaeaacaqGKbGaaeyAaiaabAgacaqGMbGaae yzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabYgacaqG GaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6 gacaqGUaaaaaa@850D@

Q.7

  Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: xy = logy + C : y’ = y 2 1 – xy ( xy0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeiEaiaabMhacaqGGaGaaeypaiaabcca caqGSbGaae4BaiaabEgacaqG5bGaaeiiaiaabUcacaqGGaGaae4qai aabccacaqG6aGaaeiiaiaabMhacaqGNaGaaeiiaiaab2dacaqGGaWa aSaaaeaacaqG5bWaaWbaaSqabeaacaqGYaaaaaGcbaGaaeymaiaabc cacaqGtaIaaeiiaiaabIhacaqG5baaamaabmaabaGaaeiEaiaabMha cqGHGjsUcaqGWaaacaGLOaGaayzkaaaaaaa@B600@

Ans

xy = logy + C Differentiating w.r.t. x, we get xy’ + y = 1 y y’ + 0 xyy’ + y 2 = y’ y 2 = y’ – xyy’ = y’( 1 – xy ) y’ = y 2 ( 1 – xy ) Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabIhacaqG5bGaaeiiaiaab2dacaqGGaGaaeiBaiaab+ga caqGNbGaaeyEaiaabccacaqGRaGaaeiiaiaaboeaaeaacaqGebGaae yAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqG PbGaaeyyaiaabshacaqGPbGaaeOBaiaabEgacaqGGaGaae4Daiaab6 cacaqGYbGaaeOlaiaabshacaqGUaGaaeiiaiaabIhacaqGSaGaaeii aiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaabIhaca qG5bGaae4jaiaabccacaqGRaGaaeiiaiaabMhacaqGGaGaaeypamaa laaabaGaaeymaaqaaiaabMhaaaGaaeyEaiaabEcacaqGGaGaae4kai aabccacaqGWaaabaGaaeiEaiaabMhacaqG5bGaae4jaiaabccacaqG RaGaaeiiaiaabMhadaahaaWcbeqaaiaabkdaaaGccaqGGaGaaeypai aabccacaqG5bGaae4jaaqaaiaabccacaqGGaGaaeiiaiaabccacaqG GaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqG5bWaaWbaaSqabe aacaqGYaaaaOGaaeiiaiaab2dacaqGGaGaaeyEaiaabEcacaqGGaGa ae4eGiaabccacaqG4bGaaeyEaiaabMhacaqGNaaabaGaaeiiaiaabc cacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabccacaqGGaGaaeii aiaabccacaqGGaGaaeiiaiaabccacaqG9aGaaeiiaiaabMhacaqGNa WaaeWaaeaacaqGXaGaaeiiaiaabobicaqGGaGaaeiEaiaabMhaaiaa wIcacaGLPaaaaeaacaqGGaGaaeiiaiaabccacaqGGaGaaeiiaiaabc cacaqGGaGaaeiiaiaabccacaqGGaGaaeyEaiaabEcacaqGGaGaaeyp aiaabccadaWcaaqaaiaabMhadaahaaWcbeqaaiaabkdaaaaakeaada qadaqaaiaabgdacaqGGaGaae4eGiaabccacaqG4bGaaeyEaaGaayjk aiaawMcaaaaaaeaacaqGubGaaeiAaiaabwhacaqGZbGaaeilaiaabs hacaqGObGaaeyzaiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOB aiaabccacaqGMbGaaeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVb GaaeOBaiaabccacaqGPbGaae4CaiaabccacaqG0bGaaeiAaiaabwga caqGGaGaae4Caiaab+gacaqGSbGaaeyDaiaabshacaqGPbGaae4Bai aab6gacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGa aeiiaiaabogacaqGVbGaaeOCaiaabkhacaqGLbGaae4Caiaabchaca qGVbGaaeOBaiaabsgacaqGPbGaaeOBaiaabEgacaqGGaaabaGaaeiz aiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG0b GaaeyAaiaabggacaqGSbGaaeiiaiaabwgacaqGXbGaaeyDaiaabgga caqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaaaaa@F6E3@

Q.8

  Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: y – cosy = x : ( ysiny + cosy + x )y’ = y MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaapaGaaeyEaiaabccacaqGtaIaaeiiaiaaboga caqGVbGaae4CaiaabMhacaqGGaGaaeypaiaabccacaqG4bGaaeiiai aabccacaqGGaGaaeiiaiaabQdacaqGGaGaaeiiaiaabccacaqGGaWa aeWaaeaacaqG5bGaae4CaiaabMgacaqGUbGaaeyEaiaabccacaqGRa GaaeiiaiaabogacaqGVbGaae4CaiaabMhacaqGGaGaae4kaiaabcca caqG4baacaGLOaGaayzkaaGaaeyEaiaabEcacaqGGaGaaeypaiaabc cacaqG5baaaaa@BC7B@

Ans

ycosy=x( i ) Differentiating w.r.t. x, we get y’+siny.y=1 y( 1+siny )=1 y= 1 1+siny Substituting values of y’ in L.H.S. of given differential equation ( ysiny + cosy + x )y’ = y, we get ( ysiny+cosy+x )y=( ysiny+cosy+x ) 1 ( 1+siny ) =( ysiny+cosy+ycosy ) 1 ( 1+siny ) [ From equation( i ) ] =( ysiny+y ) 1 ( 1+siny ) =y( siny+1 ) 1 ( 1+siny ) =y=R.H.S. Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaadMha cqGHsislciGGJbGaai4BaiaacohacaWG5bGaeyypa0JaamiEaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaac6cacaGGUaGaaiOl amaabmaabaGaamyAaaGaayjkaiaawMcaaaqaaiaabseacaqGPbGaae OzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqG HbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqG3bGaaeOlaiaabk hacaqGUaGaaeiDaiaab6cacaqGGaGaaeiEaiaabYcacaqGGaGaae4D aiaabwgacaqGGaGaae4zaiaabwgacaqG0baabaGaaGPaVlaaykW7ca qG5bGaae4jaiabgUcaRiGacohacaGGPbGaaiOBaiaadMhacaGGUaGa amyEaiaacEcacqGH9aqpcaaIXaaabaGaamyEaiaacEcadaqadaqaai aaigdacqGHRaWkciGGZbGaaiyAaiaac6gacaWG5baacaGLOaGaayzk aaGaeyypa0JaaGymaaqaaiaaxMaacaWLjaGaamyEaiaacEcacqGH9a qpdaWcaaqaaiaaigdaaeaacaaIXaGaey4kaSIaci4CaiaacMgacaGG UbGaamyEaaaaaeaacaqGtbGaaeyDaiaabkgacaqGZbGaaeiDaiaabM gacaqG0bGaaeyDaiaabshacaqGPbGaaeOBaiaabEgacaqGGaGaaeOD aiaabggacaqGSbGaaeyDaiaabwgacaqGZbGaaeiiaiaab+gacaqGMb GaaeiiaiaabMhacaqGNaGaaeiiaiaabMgacaqGUbGaaeiiaiaabYea caqGUaGaaeisaiaab6cacaqGtbGaaeOlaiaabccacaqGVbGaaeOzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGKbGa aeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshaca qGPbGaaeyyaiaabYgacaqGGaaabaGaaeyzaiaabghacaqG1bGaaeyy aiaabshacaqGPbGaae4Baiaab6gacaqGGaWaaeWaaeaacaqG5bGaae 4CaiaabMgacaqGUbGaaeyEaiaabccacaqGRaGaaeiiaiaabogacaqG VbGaae4CaiaabMhacaqGGaGaae4kaiaabccacaqG4baacaGLOaGaay zkaaGaaeyEaiaabEcacaqGGaGaaeypaiaabccacaqG5bGaaeilaiaa bccacaqG3bGaaeyzaiaabccacaqGNbGaaeyzaiaabshaaeaadaqada qaaiaadMhaciGGZbGaaiyAaiaac6gacaWG5bGaey4kaSIaci4yaiaa c+gacaGGZbGaamyEaiabgUcaRiaadIhaaiaawIcacaGLPaaacaWG5b Gaai4jaiabg2da9maabmaabaGaamyEaiGacohacaGGPbGaaiOBaiaa dMhacqGHRaWkciGGJbGaai4BaiaacohacaWG5bGaey4kaSIaamiEaa GaayjkaiaawMcaamaalaaabaGaaGymaaqaamaabmaabaGaaGymaiab gUcaRiGacohacaGGPbGaaiOBaiaadMhaaiaawIcacaGLPaaaaaaaba GaaCzcaiaaxMaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7 cqGH9aqpdaqadaqaaiaadMhaciGGZbGaaiyAaiaac6gacaWG5bGaey 4kaSIaci4yaiaac+gacaGGZbGaamyEaiabgUcaRiaadMhacqGHsisl ciGGJbGaai4BaiaacohacaWG5baacaGLOaGaayzkaaWaaSaaaeaaca aIXaaabaWaaeWaaeaacaaIXaGaey4kaSIaci4CaiaacMgacaGGUbGa amyEaaGaayjkaiaawMcaaaaaaeaacaWLjaGaaCzcaiaaxMaacaWLja GaaCzcaiaaxMaacaWLjaGaaCzcaiaaxMaadaWadaqaaiaabAeacaqG YbGaae4Baiaab2gacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabs hacaqGPbGaae4Baiaab6gadaqadaqaaiaabMgaaiaawIcacaGLPaaa aiaawUfacaGLDbaaaeaacaWLjaGaaCzcaiaaxMaacaWLjaGaaGPaVl aaykW7caaMc8UaaGPaVlabg2da9maabmaabaGaamyEaiGacohacaGG PbGaaiOBaiaadMhacqGHRaWkcaWG5baacaGLOaGaayzkaaWaaSaaae aacaaIXaaabaWaaeWaaeaacaaIXaGaey4kaSIaci4CaiaacMgacaGG UbGaamyEaaGaayjkaiaawMcaaaaaaeaacaWLjaGaaCzcaiaaxMaaca WLjaGaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iaadMhadaqadaqa aiGacohacaGGPbGaaiOBaiaadMhacqGHRaWkcaaIXaaacaGLOaGaay zkaaWaaSaaaeaacaaIXaaabaWaaeWaaeaacaaIXaGaey4kaSIaci4C aiaacMgacaGGUbGaamyEaaGaayjkaiaawMcaaaaaaeaacaWLjaGaaC zcaiaaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlabg2da9iaa dMhacqGH9aqpcaWGsbGaaiOlaiaadIeacaGGUaGaam4uaiaac6caae aacaqGubGaaeiAaiaabwhacaqGZbGaaeilaiaabshacaqGObGaaeyz aiaabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMb GaaeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabcca caqGPbGaae4CaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4Cai aab+gacaqGSbGaaeyDaiaabshacaqGPbGaae4Baiaab6gacaqGGaGa ae4BaiaabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabogaca qGVbGaaeOCaiaabkhacaqGLbGaae4CaiaabchacaqGVbGaaeOBaiaa bsgacaqGPbGaaeOBaiaabEgacaqGGaaabaGaaeizaiaabMgacaqGMb GaaeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabgga caqGSbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAai aab+gacaqGUbGaaeOlaaaaaa@D4B7@

Q.9

  Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: x +y=ta n 1 y : y 2 y+ y 2 +1=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaaruGvLjhzH5wyaGqbb8aacaWF4bGaa8hiaiaa =TcacaWF5bGaeyypa0Jaa8hDaiaa=fgacaWFUbWaaWbaaSqabeaaca WFTaGaa8xmaaaakiaa=LhacaaMc8UaaGPaVlaaykW7caWLjaGaaCzc aiaaykW7caaMc8UaaGPaVlaaykW7caWF6aGaa8hiaiaaxMaacaWH5b WaaWbaaSqabeaacaWFYaaaaOGaa8xEaiaa=DcacaWFRaGaa8xEamaa CaaaleqabaGaa8Nmaaaakiaa=TcacaWFXaGaeyypa0Jaa8hmaaaaaa@BCFE@

Ans

x +y= tan 1 y Differentiating w.r.t. x, we get 1+y’=( 1 1+ y 2 )y ( 1+y’ )( 1+ y 2 )=y 1+ y 2 +y+y y 2 =y 1+ y 2 +y y 2 =0 Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caWLjaGaaCzcaiaaykW7caWG4bacbeGaa8hiaiabgUcaRiaadMhacq GH9aqpciGG0bGaaiyyaiaac6gadaahaaWcbeqaaiaac2cacaaIXaaa aOGaamyEaiaaykW7aeaacaqGebGaaeyAaiaabAgacaqGMbGaaeyzai aabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabshacaqGPbGa aeOBaiaabEgacaqGGaGaae4Daiaab6cacaqGYbGaaeOlaiaabshaca qGUaGaaeiiaiaabIhacaqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaa bEgacaqGLbGaaeiDaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8 UaaGPaVlaaykW7caaMc8UaaCzcaiaaxMaacaaMc8UaaGPaVlaaykW7 caqGXaGaae4kaiaabMhacaqGNaGaeyypa0ZaaeWaaeaadaWcaaqaai aaigdaaeaacaaIXaGaey4kaSIaamyEamaaCaaaleqabaGaiGjGikda aaaaaaGccaGLOaGaayzkaaGaamyEaiaacEcaaeaacaaMc8UaaGPaVl aaykW7caaMc8+aaeWaaeaacaqGXaGaey4kaSIaaGPaVlaabMhacaqG NaaacaGLOaGaayzkaaWaaeWaaeaacaaIXaGaey4kaSIaamyEamaaCa aaleqabaGaiGjGikdaaaaakiaawIcacaGLPaaacqGH9aqpcaWG5bGa ai4jaaqaaiaaigdacqGHRaWkcaWG5bWaaWbaaSqabeaacaaIYaaaaO Gaey4kaSIaamyEaiaacEcacqGHRaWkcaWG5bGaai4jaiaadMhadaah aaWcbeqaaiaaikdaaaGccqGH9aqpcaWG5bGaai4jaaqaaiaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGymaiab gUcaRiaadMhadaahaaWcbeqaaiaaikdaaaGccqGHRaWkcaWG5bGaai 4jaiaadMhadaahaaWcbeqaaiaaikdaaaGccqGH9aqpcaaIWaaabaGa aeivaiaabIgacaqG1bGaae4CaiaabYcacaqG0bGaaeiAaiaabwgaca qGGaGaae4zaiaabMgacaqG2bGaaeyzaiaab6gacaqGGaGaaeOzaiaa bwhacaqGUbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae yAaiaabohacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabohacaqG VbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaab+ gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae4B aiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqGKb GaaeyAaiaab6gacaqGNbGaaeiiaaqaaiaabsgacaqGPbGaaeOzaiaa bAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaae iBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqG VbGaaeOBaiaab6caaaaa@0F43@

Q.10

  Verify that the given functions ( explicit or implicit )is a solution of the corresponding differential equation: y= a 2 x 2 x( a,a ): x+y dy dx =0( y0 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr 4rNCHbGeaGqiVD0dg9vqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq=Jc9 vqaqpepm0xbba9pwe9Q8fs0=yqaqpepae9pg0FirpepeKkFr0xfr=x fr=xb9adbaqaaeaacaGaaiaabaqaamaabaabaaGceaqabeaaqaaaaa aaaaWdbiaabAfacaqGLbGaaeOCaiaabMgacaqGMbGaaeyEaiaabcca caqG0bGaaeiAaiaabggacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGNbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGMbGa aeyDaiaab6gacaqGJbGaaeiDaiaabMgacaqGVbGaaeOBaiaabohaca qGGaWdamaabmaabaWdbiaabwgacaqG4bGaaeiCaiaabYgacaqGPbGa ae4yaiaabMgacaqG0bGaaeiiaiaab+gacaqGYbGaaeiiaiaabMgaca qGTbGaaeiCaiaabYgacaqGPbGaae4yaiaabMgacaqG0baapaGaayjk aiaawMcaa8qacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa b+gacaqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGJbGaae 4BaiaabkhacaqGYbGaaeyzaiaabohacaqGWbGaae4Baiaab6gacaqG KbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsgacaqGPbGaaeOzaiaabA gacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabQdaaeaaruGvLjhzH5wyaGqbb8aacaWF5bGaeyypa0Za aOaaaeaacaWHHbWaaWbaaSqabeaacaWHYaaaaOGaeyOeI0IaaCiEam aaCaaaleqabaGaaCOmaaaaaeqaaOGaaGPaVlaahIhacqGHiiIZdaqa daqaaiabgkHiTiaa=fgacaWFSaGaa8xyaaGaayjkaiaawMcaaiaayk W7caaMc8UaaGPaVlaaykW7caaMc8Uaa8Noaiaa=bcacaWLjaGaa8hE aiaa=TcacaWF5bWaaSaaaeaacaWFKbGaa8xEaaqaaiaa=rgacaWF4b aaaiaa=1dacaWFWaGaaGPaVlaaykW7daqadaqaaiaahMhacqGHGjsU caWHWaaacaGLOaGaayzkaaaaaaa@C593@

Ans

y= a 2 x 2 Differentiating w.r.t. x, we get dy dx = x a 2 x 2 = x y Substituting the value of dy dx in L.H.S. of given differential equation x+y dy dx =0, we get L.H.S.=x+y dy dx =x+y( x y ) =xx =0=R.H.S. Thus,the given function is the solution of the corresponding differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7 caaMc8UaamyEaiabg2da9maakaaabaGaamyyamaaCaaaleqabaGaaG OmaaaakiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaaabeaakiaa ykW7aeaacaqGebGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLb GaaeOBaiaabshacaqGPbGaaeyyaiaabshacaqGPbGaaeOBaiaabEga caqGGaGaae4Daiaab6cacaqGYbGaaeOlaiaabshacaqGUaGaaeiiai aabIhacaqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGa aeiDaaqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaCzcaiaaxMaacaaMc8UaaGPaVlaaykW7daWcaaqaaiaa dsgacaWG5baabaGaamizaiaadIhaaaGaeyypa0ZaaSaaaeaacqGHsi slcaWG4baabaWaaOaaaeaacaWGHbWaaWbaaSqabeaacaaIYaaaaOGa eyOeI0IaamiEamaaCaaaleqabaGaaGOmaaaaaeqaaaaaaOqaaiaaxM aacaWLjaGaaCzcaiabg2da9maalaaabaGaeyOeI0IaamiEaaqaaiaa dMhaaaaabaGaae4uaiaabwhacaqGIbGaae4CaiaabshacaqGPbGaae iDaiaabwhacaqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabshacaqG ObGaaeyzaiaabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabc cacaqGVbGaaeOzaiaabccadaWcaaqaaiaadsgacaWG5baabaGaamiz aiaadIhaaaGaaeiiaiaabMgacaqGUbGaaeiiaiaabYeacaqGUaGaae isaiaab6cacaqGtbGaaeOlaiaabccacaqGVbGaaeOzaiaabccacaqG NbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGKbGaaeyAaiaabA gacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyy aiaabYgacaqGGaaabaGaaeyzaiaabghacaqG1bGaaeyyaiaabshaca qGPbGaae4Baiaab6gacaqGGaGaamiEaiabgUcaRiaadMhadaWcaaqa aiaadsgacaWG5baabaGaamizaiaadIhaaaGaeyypa0JaaGimaiaacY cacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0baabaGa aeitaiaab6cacaqGibGaaeOlaiaabofacaqGUaGaeyypa0JaamiEai abgUcaRiaadMhadaWcaaqaaiaadsgacaWG5baabaGaamizaiaadIha aaaabaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7cqGH9aqpcaWG4b Gaey4kaSIaamyEamaabmaabaWaaSaaaeaacqGHsislcaWG4baabaGa amyEaaaaaiaawIcacaGLPaaaaeaacaWLjaGaaGPaVlaaykW7caaMc8 UaaGPaVlabg2da9iaadIhacqGHsislcaWG4baabaGaaCzcaiaaykW7 caaMc8UaaGPaVlaaykW7cqGH9aqpcaaIWaGaeyypa0JaamOuaiaac6 cacaWGibGaaiOlaiaadofacaGGUaaabaGaaeivaiaabIgacaqG1bGa ae4CaiaabYcacaqG0bGaaeiAaiaabwgacaqGGaGaae4zaiaabMgaca qG2bGaaeyzaiaab6gacaqGGaGaaeOzaiaabwhacaqGUbGaae4yaiaa bshacaqGPbGaae4Baiaab6gacaqGGaGaaeyAaiaabohacaqGGaGaae iDaiaabIgacaqGLbGaaeiiaiaabohacaqGVbGaaeiBaiaabwhacaqG 0bGaaeyAaiaab+gacaqGUbGaaeiiaiaab+gacaqGMbGaaeiiaiaabs hacaqGObGaaeyzaiaabccacaqGJbGaae4BaiaabkhacaqGYbGaaeyz aiaabohacaqGWbGaae4Baiaab6gacaqGKbGaaeyAaiaab6gacaqGNb GaaeiiaaqaaiaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaa bwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiBaiaabccacaqGLbGaae yCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaab6caaaaa @574C@

Q.11  The number of arbitrary constants in the general solution of a differential equation of fourth order are:

(A) 0 (B) 2 (C) 3 (D) 4

Ans

Since, number of constants in a differential equation of order n is equal to its order i.e., n.
Thus, number of arbitrary constants in a differential equation of fourth order are 4.
Thus, option D is correct.

Q.12  The number of arbitrary constants in the particular solution of a differential equation of third order are:

(A) 3 (B) 2 (C) 1 (D) 0

Ans

In a particular solution, there are no arbitrary constants.

∴ Number of arbitrary constants = 0
Thus, option D is correct.

Please register to view this section

FAQs (Frequently Asked Questions)

1. Que 1.Where to find reliable NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2?

The Extramarks website provides authentic and high-quality online versions of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2. The content available on the Extramarks learning portal is curated by renowned subject experts and is reliable, up-to-date, and comprehensive. The content under the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 has been compiled in consideration of the latest NCERT academic curriculum. The solutions provided have been engineered in order to ensure efficiency, simplicity, and effectiveness. It has also been ensured that there would be a minimum discrepancies between the content being delivered to students by the teachers in the classroom and the online learning resources being provided to them by Extramarks.

2. What are the benefits of the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2?

The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 curated by the Extramarks website are comprehensive, easy to understand, and well-organised. These solutions will complement the hard work and sincere efforts of students and will aid and encourage self-learning among them. Students seeking answers to unresolved questions and doubts will find these solutions  useful and organised according to the latest NCERT syllabus. The Extramarks learning platform provides the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 assuring high-quality and easy-to-understand calculations.

3. Is Differential Equations a complex and difficult topic in the NCERT prescribed curriculum for Class 12 for Mathematics?

While Differential Equations can indeed be considered a versatile and complex theme which covers a variety of topics within the prescribed NCERT academic curriculum for Mathematics in Class 12, they are quite useful. Not only are they fundamental areas of study for a wide variety of research fields and professional arenas of study, but they are also quite interesting once one has the necessary conceptual clarity. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 made available by Extramarks can be very helpful in cultivating this clarity.