NCERT Solutions Class 12 Maths Chapter 9 Differential Equation Exercise 9.4

Since the beginning of civilisation itself, the numerous disciplines of Science including Mathematics, Physics, Chemistry, Biology etc. have sparked interest and curiosity among people across the world. People have raised questions and have attempted to seek answers through discoveries, experimentation, and calculations of natural and other phenomena, seeking accuracy. Mathematics in particular, is often regarded as one of the oldest scientific disciplines to be taught and researched. One of the reasons behind this prominence of Mathematics could be that it is a subject whose knowledge is fundamental to the efficient organisation and smooth functioning of a majority of human activities and a variety of man-made operations. A multitude of associated disciplines and sub-disciplines make up the composition of Mathematics as a subject. This underlines the vast untapped potential for research contained within this subject, which is yet to be explored.

Thus, Mathematics has emerged as an indispensable academic subject. It has been a part of academic instruction since the earliest levels of school education and gets more versatile as one rises in grades. Students who wish to pursue a career in Mathematics which is indeed a field with many lucrative career options, should choose the Mathematics stream in classes 11 and 12. Mathematics occupies an important portion of the prescribed NCERT academic curriculum for Class 12.

TThe mathematics syllabus prescribed for Class 12 is geared towards solidifying the fundamentals of students and preparing them for competitive exams in the future. The importance of dependable learning resources like the NCERT Solutions which can act as reliable reference materials, is noteworthy in this context. The NCERT academic curriculum for Class 12 is composed of thirteen chapters that cover various crucial themes. These chapters are organised into a sequence to facilitate learning. Chapter 9 covers the theme of Differential Equations. The Ex 9.3 Class12 is one of the multiple comprehensive prescribed exercises that make up the entirety of Chapter 9. This exercise is extremely important for examinations and hence has to be understood and practised regularly. The Extramarks’ website has compiled the NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.2 to facilitate students’ learning processes. To ensure high quality content, the NCERT Solutions for Class 12 Maths, Chapter 9, Exercise 9.3 have been compiled in collaboration with experts.The NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 could be effectively utilised as an efficient resource for self-study and revision by students. The nuances of the latest updated NCERT academic syllabus for Mathematics have been carefully considered in the preparation of the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3.

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations (Ex 9.3) Exercise 9.3 

Differential Equations have caused considerable apprehension and hesitation among students, much to the chagrin of their instructors and the students themselves.This attitude has not only proven to be a hindrance in terms of the standards of academic performance but also in terms of retaining the interest of students in the content being delivered by the teachers.

However, it is imperative to point out that Differential Equations are a very engaging and interesting theme within Mathematics. Adequate conceptual clarity as well as knowledge of the practical application of the right formulae at the right places can transform the attitude of students towards the theme of Differential Equations. Undoubtedly, Differential Equations along with the exercise 9.3 Class 12 Maths are indispensable topics from the point of view of examinations. Therefore, the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 can prove to be exceedingly helpful in appropriately addressing the concerns of students concerning the theme. As a result of the efficient design provided by the Extramarks website, the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 have been adapted to cater to the needs, doubts, and apprehensions of students about Differential Equations. The simple design of the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 is bound to be crucial in aiding and encouraging self-learning among students.

Students may often find it challenging to follow the pace of instruction during the delivery of instruction by teachers in the classroom. . It could also be difficult for them to keep up with the speed at which they are learning or grasping the instructions of their peers. They may be left with unresolved doubts or unanswered queries, which may prove to be a major obstacle to tackle to attain the necessary conceptual clarity. The NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 can be of great assistance in this regard.

Differential Equations are a fundamental and vital part of the wider academic scope of the subject of Mathematics as a focus of research. The NCERT Solutions For Class 12 Maths Chapter 9 Exercise 9.3 provide clear-cut and simple solutions to Exercise 9.2 of the chapter on Differential Equations. The NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 have been compiled with careful consideration of the methods of classroom teaching.As a result, there are no significant differences between classroom instruction and the compiled solutions in the NCERT Solutions for Class 12 Maths, Chapter 9, Exercise 9.3.

Access NCERT Solution for Class 12 Maths Chapter 9 – Differential Equations

Differential Equations are unquestionably an important part of the entire NCERT academic curriculum for mathematics in Class 12.However, students and teachers have frequently expressed concern that differential equations is a complex and distinct academic topic with its own set of peculiarities.It is a sophisticated topic with heavy and conceptually versatile content. This is precisely the reason why Differential Equations is also the focal point of a wide variety of academic research in Mathematics.

Accordingly, the theme of Differential Equations is a mandatory fundamental keystone for those who wish to pursue a career in Mathematics or want to attain higher education in the subject. Therefore, students must be very attentive to cultivating conceptual clarity and adequate comprehension of the topic of Differential Equations. It is strongly advised that students consistently practise and cautiously review the various assessments prescribed as a part of Chapter 9 which covers the theme of Differential Equations. Regular and continuous revision would improve students’ memory retention abilities regarding the vast reserve of formulae and their derivatives that comprise the designated theme.Practice and revision would also be quintessential in the process of familiarising students with the general types of questions which are asked under the topic of Differential Equations. In this regard, students must constantly improve their skills by practising the exercises which are a part of their prescribed curriculum within the NCERT books with the aid of helpful reference material like the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3. Regular practice with help of the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 would also lead to a considerable improvement in the problem comprehension skills of the students. With this achievement, they would be able to adequately comprehend the problems offered to them and would accordingly be able to develop appropriate solutions to those problems. Students would be able to figure out the logical sequence of steps to be followed to calculate the solution to a problem efficiently and effectively. Thus, they would also be equipped with the necessary knowledge and application skills.

The NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 have been designed to provide students with dynamically consumable learning resources to aid students during the examination period. Therefore, the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 have been compiled on a selective basis through carefully considering the most efficient ways of solving long-drawn problems related to the theme of Differential Equations.

Extramarks provides high-quality, authentic and comprehensively explained NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3. These solutions are available on the Extramarks’ learning platform, are curated by reputed subject experts, and would act as a versatile learning resource for the students.

What Does Differential Equation Mean?

According to the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3, a Differential Equation can be defined as an equation which involves the derivatives of a function or many functions. The ones which define the rate of change of a function at a point are referred to as Derivatives of that function.  The most important objective of studying differential equations is to study solutions that satisfy the equations and the properties of the solutions. The relevance, definitions, and comprehensive methods of solving and identifying differential equations have been covered in NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3. The NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 provide detailed, step-by-step solutions to the problems which comprise Exercise 9.3. The formulae used to do the calculations have also been mentioned and covered in detail to ensure that students have total clarity about the logical sequence of the calculations. Extramarks is providing the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 to complement students’ hard work and perseverance.

NCERT Solutions for Class 12 Maths Chapter 9 Differential Equations Exercise 9.3

The Extramarks’ website has invested considerable efforts in the compilation of the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3. It has conducted extensive research and intensive analysis of the details of the updated NCERT syllabus. This has been done to avoid any discrepancies between the provisions of the NCERT academic syllabus and the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3. The NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 have been structured into a simple, user-friendly and classroom-compatible framework to provide assistance to the self-learning of students. This has been done with special caution for the convenience of students.

The NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 have been arranged in a step-by-step format so that they can appropriately follow the logical sequence of calculations. It is vital for students to read, revise and retain important formulae and their derivatives. It is also equally crucial for them to be familiar with the appropriate practical application of these formulae, to solve problems presented to them. This is a skill which can be achieved through continuous practise and revision of the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3. Therefore, Extramarks provides the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 as exhaustive and curated reference material with quality content for the convenience of reference whenever required.

The Extramarks’ website is a reliable, reputed and efficient learning platform. Extramarks provides high-quality, detailed, and easy-to-follow academic content like the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 to complement the efforts of students. Additionally, the Extramarks has other well-structured and dependable content like the NCERT Solutions Class 1, NCERT Solutions Class 2, NCERT Solutions Class 3, NCERT Solutions Class 4, NCERT Solutions Class 5, NCERT Solutions Class 6, NCERT Solutions Class 7, NCERT Solutions Class 8, NCERT Solutions Class 9, NCERT Solutions Class 10, NCERT Solutions Class 11 and NCERT Solutions Class 12.

Q.1 Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

x a + y b =1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aadaWcaaqaaGqabiaa=HhaaeaacaWFHbaaaiaa=TcadaWcaaqaaiaa =LhaaeaacaWFIbaaaiaa=1dacaWFXaaaaa@3EBE@

Ans

x a + y b =1 Differentiating both sides w.r.t. x, we get 1 a + 1 b dy dx =0 Againg,differentiating both sides w.r.t. x, we get 1 b d 2 y d x 2 =0 d 2 y d x 2 =0y=0 Hence, the required differential equation is y”=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaacaWG 4baabaGaamyyaaaacqGHRaWkdaWcaaqaaiaadMhaaeaacaWGIbaaai abg2da9iaaigdaaeaacaqGebGaaeyAaiaabAgacaqGMbGaaeyzaiaa bkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyaiaabshacaqGPbGaae OBaiaabEgacaqGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqG ZbGaaeyAaiaabsgacaqGLbGaae4CaiaabccacaqG3bGaaeOlaiaabk hacaqGUaGaaeiDaiaab6cacaqGGaGaaeiEaiaabYcacaqGGaGaae4D aiaabwgacaqGGaGaae4zaiaabwgacaqG0baabaWaaSaaaeaacaaIXa aabaGaamyyaaaacqGHRaWkdaWcaaqaaiaaigdaaeaacaWGIbaaamaa laaabaGaamizaiaadMhaaeaacaWGKbGaamiEaaaacqGH9aqpcaaIWa aabaGaaeyqaiaabEgacaqGHbGaaeyAaiaab6gacaqGNbGaaeilaiaa ykW7caqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaae OBaiaabshacaqGPbGaaeyyaiaabshacaqGPbGaaeOBaiaabEgacaqG GaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAaiaabs gacaqGLbGaae4CaiaabccacaqG3bGaaeOlaiaabkhacaqGUaGaaeiD aiaab6cacaqGGaGaaeiEaiaabYcacaqGGaGaae4DaiaabwgacaqGGa Gaae4zaiaabwgacaqG0baabaGaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caaMc8+aaSaaaeaacaaIXaaabaGaamOyaaaadaWcaaqaaiaads gadaahaaWcbeqaaiaaikdaaaGccaWG5baabaGaamizaiaadIhadaah aaWcbeqaaiacyciIYaaaaaaakiabg2da9iaaicdaaeaacqGHshI3ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaamizamaaCaaa leqabaGaaGOmaaaakiaadMhaaeaacaWGKbGaamiEamaaCaaaleqaba GaiGjGikdaaaaaaOGaeyypa0JaaGimaiabgkDiElaadMhacaGGNaGa ai4jaiabg2da9iaaicdaaeaacaqGibGaaeyzaiaab6gacaqGJbGaae yzaiaabYcacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabkhacaqG LbGaaeyCaiaabwhacaqGPbGaaeOCaiaabwgacaqGKbGaaeiiaiaabs gacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiD aiaabMgacaqGHbGaaeiBaiaabccacaqGLbGaaeyCaiaabwhacaqGHb GaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGPbGaae4Caiaabcca caqG5bGaae4jaiaabEcacaqG9aGaaeimaiaab6caaaaa@FBFD@

Q.2 Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y 2 =a( b 2 x 2 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aaieqacaWF5bWaaWbaaSqabeaacaWHYaaaaOGaa8xpaiaa=fgadaqa daqaaiaahkgadaahaaWcbeqaaiaaikdaaaGccqGHsislcaWH4bWaaW baaSqabeaacaWHYaaaaaGccaGLOaGaayzkaaaaaa@429D@

Ans

y2=a(b2x2)Differentiating both sides w.r.t. x, we get2ydydx=a(02x)2ydydx=2ax  ...(i)Againg,differentiating both sides w.r.t. x, we get2{(dydx)2+yd2ydx2}=2a    (dydx)2+yd2ydx2=a    ...(ii)Putting value ofa from equation(ii) to equation(i), we get        2ydydx=2{(dydx)2+yd2ydx2}x      ydydx=x(dydx)2+xyd2ydx2xyy+x(y)2yy=0Hence, the required differential equation is xyy”+x(y)2yy‘ = 0.

Q.3 Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y=a e 3x +b e 2x MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aaieqacaWF5bGaa8xpaiaa=fgacaWFLbWaaWbaaSqabeaacaWFZaGa a8hEaaaakiaa=TcacaWFIbGaa8xzamaaCaaaleqabaGaeyOeI0Iaa8 Nmaiaa=Hhaaaaaaa@4369@

Ans

y=a e 3x +b e 2x ( i ) Differentiating both sides w.r.t. x, we get y=3a e 3x 2b e 2x ( ii ) Againg,differentiating both sides w.r.t. x, we get y=9a e 3x +4b e 2x ( iii ) Adding equation( ii ) and 2×equation( i ),we get y+2y=3a e 3x 2b e 2x +2( a e 3x +b e 2x ) y+2y=3a e 3x 2b e 2x +2a e 3x +2b e 2x y+2y=5a e 3x a e 3x = y+2y 5 Substracting equation( ii ) from 3×equation( i ),we get 3yy=3a e 3x +3b e 2x ( 3a e 3x 2b e 2x ) 3yy=3a e 3x +3b e 2x 3a e 3x +2b e 2x 3yy=5b e 2x b e 2x = 3yy 5 Putting the values of ae 3x and be -2x in equation( iii ), we get y=9( y+2y 5 )+4( 3yy 5 ) 5y=9y+18y+12y4y 5y=5y+30y yy6y=0 Hence, the required differential equation is y”–y’–6y = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyEaiabg2da 9iaadggacaWGLbWaaWbaaSqabeaacaaIZaGaamiEaaaakiabgUcaRi aadkgacaWGLbWaaWbaaSqabeaacqGHsislcaaIYaGaamiEaaaakiaa xMaacaWLjaGaaCzcaiaaxMaacaaMc8UaaiOlaiaac6cacaGGUaWaae WaaeaacaWGPbaacaGLOaGaayzkaaaabaGaaeiraiaabMgacaqGMbGa aeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggaca qG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabkgacaqGVbGaaeiDaiaa bIgacaqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabohacaqGGaGaae 4Daiaab6cacaqGYbGaaeOlaiaabshacaqGUaGaaeiiaiaabIhacaqG SaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaaqaai aaykW7caaMc8UaamyEaiaacEcacqGH9aqpcaaIZaGaamyyaiaadwga daahaaWcbeqaaiaaiodacaWG4baaaOGaeyOeI0IaaGOmaiaadkgaca WGLbWaaWbaaSqabeaacqGHsislcaaIYaGaamiEaaaakiaaykW7caWL jaGaaCzcaiaaxMaacaaMc8UaaiOlaiaac6cacaGGUaWaaeWaaeaaca WGPbGaamyAaaGaayjkaiaawMcaaaqaaiaabgeacaqGNbGaaeyyaiaa bMgacaqGUbGaae4zaiaabYcacaaMc8UaaeizaiaabMgacaqGMbGaae OzaiaabwgacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqG 0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabkgacaqGVbGaaeiDaiaabI gacaqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabohacaqGGaGaae4D aiaab6cacaqGYbGaaeOlaiaabshacaqGUaGaaeiiaiaabIhacaqGSa GaaeiiaiaabEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaa dMhacaGGNaGaai4jaiabg2da9iaaiMdacaWGHbGaamyzamaaCaaale qabaGaaG4maiaadIhaaaGccqGHRaWkcaaI0aGaamOyaiaadwgadaah aaWcbeqaaiabgkHiTiaaikdacaWG4baaaOGaaCzcaiaaykW7caWLja GaaCzcaiaac6cacaGGUaGaaiOlamaabmaabaGaamyAaiaadMgacaWG PbaacaGLOaGaayzkaaaabaGaaeyqaiaabsgacaqGKbGaaeyAaiaab6 gacaqGNbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyA aiaab+gacaqGUbWaaeWaaeaacaqGPbGaaeyAaaGaayjkaiaawMcaai aabccacaqGHbGaaeOBaiaabsgacaqGGaGaaeOmaiaabEnacaqGLbGa aeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBamaabmaaba GaaeyAaaGaayjkaiaawMcaaiaabYcacaaMc8Uaae4DaiaabwgacaqG GaGaae4zaiaabwgacaqG0baabaGaamyEaiaacEcacqGHRaWkcaaIYa GaamyEaiabg2da9iaaiodacaWGHbGaamyzamaaCaaaleqabaGaaG4m aiaadIhaaaGccqGHsislcaaIYaGaamOyaiaadwgadaahaaWcbeqaai abgkHiTiaaikdacaWG4baaaOGaey4kaSIaaGOmamaabmaabaGaamyy aiaadwgadaahaaWcbeqaaiaaiodacaWG4baaaOGaey4kaSIaamOyai aadwgadaahaaWcbeqaaiabgkHiTiaaikdacaWG4baaaaGccaGLOaGa ayzkaaaabaGaamyEaiaacEcacqGHRaWkcaaIYaGaamyEaiabg2da9i aaiodacaWGHbGaamyzamaaCaaaleqabaGaaG4maiaadIhaaaGccqGH sislcaaIYaGaamOyaiaadwgadaahaaWcbeqaaiabgkHiTiaaikdaca WG4baaaOGaey4kaSIaaGOmaiaadggacaWGLbWaaWbaaSqabeaacaaI ZaGaamiEaaaakiabgUcaRiaaikdacaWGIbGaamyzamaaCaaaleqaba GaeyOeI0IaaGOmaiaadIhaaaaakeaacaWG5bGaai4jaiabgUcaRiaa ikdacaWG5bGaeyypa0JaaGynaiaadggacaWGLbWaaWbaaSqabeaaca aIZaGaamiEaaaakiabgkDiElaadggacaWGLbWaaWbaaSqabeaacaaI ZaGaamiEaaaakiabg2da9maalaaabaGaamyEaiaacEcacqGHRaWkca aIYaGaamyEaaqaaiaaiwdaaaaabaGaae4uaiaabwhacaqGIbGaae4C aiaabshacaqGYbGaaeyyaiaabogacaqG0bGaaeyAaiaab6gacaqGNb GaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+ga caqGUbWaaeWaaeaacaqGPbGaaeyAaaGaayjkaiaawMcaaiaabccaca qGMbGaaeOCaiaab+gacaqGTbGaaeiiaiaabodacaqGxdGaaeyzaiaa bghacaqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gadaqadaqaai aabMgaaiaawIcacaGLPaaacaqGSaGaaGPaVlaabEhacaqGLbGaaeii aiaabEgacaqGLbGaaeiDaaqaaiaaiodacaWG5bGaeyOeI0IaamyEai aacEcacqGH9aqpcaaIZaGaamyyaiaadwgadaahaaWcbeqaaiaaioda caWG4baaaOGaey4kaSIaaG4maiaadkgacaWGLbWaaWbaaSqabeaacq GHsislcaaIYaGaamiEaaaakiabgkHiTmaabmaabaGaaG4maiaadgga caWGLbWaaWbaaSqabeaacaaIZaGaamiEaaaakiabgkHiTiaaikdaca WGIbGaamyzamaaCaaaleqabaGaeyOeI0IaaGOmaiaadIhaaaaakiaa wIcacaGLPaaaaeaacaaMc8UaaG4maiaadMhacqGHsislcaWG5bGaai 4jaiabg2da9iaaiodacaWGHbGaamyzamaaCaaaleqabaGaaG4maiaa dIhaaaGccqGHRaWkcaaIZaGaamOyaiaadwgadaahaaWcbeqaaiabgk HiTiaaikdacaWG4baaaOGaeyOeI0IaaG4maiaadggacaWGLbWaaWba aSqabeaacaaIZaGaamiEaaaakiabgUcaRiaaikdacaWGIbGaamyzam aaCaaaleqabaGaeyOeI0IaaGOmaiaadIhaaaaakeaacaaMc8UaaG4m aiaadMhacqGHsislcaWG5bGaai4jaiabg2da9iaaiwdacaWGIbGaam yzamaaCaaaleqabaGaeyOeI0IaaGOmaiaadIhaaaaakeaacaaMc8Ua aGPaVlaaykW7caaMc8UaamOyaiaadwgadaahaaWcbeqaaiabgkHiTi aaikdacaWG4baaaOGaeyypa0ZaaSaaaeaacaaIZaGaamyEaiabgkHi TiaadMhacaGGNaaabaGaaGynaaaaaeaacaqGqbGaaeyDaiaabshaca qG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabshacaqGObGaaeyzaiaa bccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabohacaqGGaGaae 4BaiaabAgacaqGGaGaaeyyaiaabwgadaahaaWcbeqaaiaabodacaqG 4baaaOGaaGPaVlaabggacaqGUbGaaeizaiaaykW7caaMc8UaaeOyai aabwgadaahaaWcbeqaaiaab2cacaqGYaGaaeiEaaaakiaabccacaqG PbGaaeOBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabM gacaqGVbGaaeOBamaabmaabaGaaeyAaiaabMgacaqGPbaacaGLOaGa ayzkaaGaaeilaiaabccacaqG3bGaaeyzaiaabccacaqGNbGaaeyzai aabshaaeaacaaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaM c8UaaGPaVlaadMhacaGGNaGaai4jaiabg2da9iaaiMdadaqadaqaam aalaaabaGaamyEaiaacEcacqGHRaWkcaaIYaGaamyEaaqaaiaaiwda aaaacaGLOaGaayzkaaGaey4kaSIaaGinamaabmaabaWaaSaaaeaaca aIZaGaamyEaiabgkHiTiaadMhacaGGNaaabaGaaGynaaaaaiaawIca caGLPaaaaeaacqGHshI3caaI1aGaamyEaiaacEcacaGGNaGaeyypa0 JaaGyoaiaadMhacaGGNaGaey4kaSIaaGymaiaaiIdacaWG5bGaey4k aSIaaGymaiaaikdacaWG5bGaeyOeI0IaaGinaiaadMhacaGGNaaaba GaeyO0H4TaaGynaiaadMhacaGGNaGaai4jaiabg2da9iaaiwdacaWG 5bGaai4jaiabgUcaRiaaiodacaaIWaGaamyEaaqaaiabgkDiElaadM hacaGGNaGaai4jaiabgkHiTiaadMhacaGGNaGaeyOeI0IaaGOnaiaa dMhacqGH9aqpcaaIWaaabaGaaeisaiaabwgacaqGUbGaae4yaiaabw gacaqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGYbGaaeyz aiaabghacaqG1bGaaeyAaiaabkhacaqGLbGaaeizaiaabccacaqGKb GaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabsha caqGPbGaaeyyaiaabYgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyai aabshacaqGPbGaae4Baiaab6gacaqGGaGaaeyAaiaabohacaqGGaGa aeyEaiaabEcacaqGNaGaaeylaiaabMhacaqGNaGaaeylaiaabAdaca qG5bGaaeypaiaabcdacaqGUaaaaaa@8B44@

Q.4 Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y=e 2x a+bx

 

Ans

y= e 2x ( a+bx ) Differentiating both sides w.r.t. x, we get y= e 2x ( 0+b )+2 e 2x ( a+bx ) y=b e 2x +2y y2y=b e 2x ( i ) Againg,differentiating both sides w.r.t. x, we get y2y=2b e 2x ( ii ) Dividing equation( ii ) by equation( i ), we get y2y y2y = 2b e 2x b e 2x y2y y2y =2 y2y=2( y2y ) y2y2y+4y=0 y4y+4y=0 Hence, the required differential equation is y” –4y’ + 4y = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaxMaacaWLjaGaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7 caWG5bGaeyypa0JaamyzamaaCaaaleqabaGaaGOmaiaadIhaaaGcda qadaqaaiaadggacqGHRaWkcaWGIbGaaGPaVlaadIhaaiaawIcacaGL PaaaaeaacaqGebGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLb GaaeOBaiaabshacaqGPbGaaeyyaiaabshacaqGPbGaaeOBaiaabEga caqGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAai aabsgacaqGLbGaae4CaiaabccacaqG3bGaaeOlaiaabkhacaqGUaGa aeiDaiaab6cacaqGGaGaaeiEaiaabYcacaqGGaGaae4Daiaabwgaca qGGaGaae4zaiaabwgacaqG0baabaGaaCzcaiaaxMaacaWLjaGaaGPa VlaaykW7caaMc8UaamyEaiaacEcacqGH9aqpcaWGLbWaaWbaaSqabe aacaaIYaGaamiEaaaakmaabmaabaGaaGimaiabgUcaRiaadkgaaiaa wIcacaGLPaaacqGHRaWkcaaIYaGaamyzamaaCaaaleqabaGaaGOmai aadIhaaaGcdaqadaqaaiaadggacqGHRaWkcaWGIbGaaGPaVlaadIha aiaawIcacaGLPaaaaeaacaWLjaGaaCzcaiaaxMaacaaMc8UaaGPaVl aaykW7caWG5bGaai4jaiabg2da9iaadkgacaWGLbWaaWbaaSqabeaa caaIYaGaamiEaaaakiabgUcaRiaaikdacaWG5baabaGaeyO0H4TaaC zcaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaamyEaiaacEcacqGH sislcaaIYaGaamyEaiabg2da9iaadkgacaWGLbWaaWbaaSqabeaaca aIYaGaamiEaaaakiaaxMaacaWLjaGaaGPaVlaaxMaacaaMc8UaaGPa VlaaykW7caGGUaGaaiOlaiaac6cadaqadaqaaiaadMgaaiaawIcaca GLPaaaaeaacaqGbbGaae4zaiaabggacaqGPbGaaeOBaiaabEgacaqG SaGaaGPaVlaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabw gacaqGUbGaaeiDaiaabMgacaqGHbGaaeiDaiaabMgacaqGUbGaae4z aiaabccacaqGIbGaae4BaiaabshacaqGObGaaeiiaiaabohacaqGPb GaaeizaiaabwgacaqGZbGaaeiiaiaabEhacaqGUaGaaeOCaiaab6ca caqG0bGaaeOlaiaabccacaqG4bGaaeilaiaabccacaqG3bGaaeyzai aabccacaqGNbGaaeyzaiaabshaaeaacaWLjaGaaCzcaiaaykW7caaM c8UaaGPaVlaadMhacaGGNaGaai4jaiabgkHiTiaaikdacaWG5bGaai 4jaiabg2da9iaaikdacaWGIbGaamyzamaaCaaaleqabaGaaGOmaiaa dIhaaaGccaaMc8UaaGPaVlaaxMaacaWLjaGaaCzcaiaaykW7caaMc8 UaaiOlaiaac6cacaGGUaWaaeWaaeaacaWGPbGaamyAaaGaayjkaiaa wMcaaaqaaiaabseacaqGPbGaaeODaiaabMgacaqGKbGaaeyAaiaab6 gacaqGNbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyA aiaab+gacaqGUbWaaeWaaeaacaqGPbGaaeyAaaGaayjkaiaawMcaai aabccacaqGIbGaaeyEaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGa aeiDaiaabMgacaqGVbGaaeOBamaabmaabaGaaeyAaaGaayjkaiaawM caaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG 0baabaGaaCzcaiaaxMaacaaMc8UaaGPaVlaaykW7caaMc8+aaSaaae aacaWG5bGaai4jaiaacEcacqGHsislcaaIYaGaamyEaiaacEcaaeaa caWG5bGaai4jaiabgkHiTiaaikdacaWG5baaaiabg2da9maalaaaba GaaGOmaiaadkgacaWGLbWaaWbaaSqabeaacaaIYaGaamiEaaaaaOqa aiaadkgacaWGLbWaaWbaaSqabeaacaaIYaGaamiEaaaaaaaakeaaca WLjaGaaCzcaiaaaykW7caaMc8UaaGPaVlaaykW7daWcaaqaaiaadMha caGGNaGaai4jaiabgkHiTiaaikdacaWG5bGaai4jaaqaaiaadMhaca GGNaGaeyOeI0IaaGOmaiaadMhaaaGaeyypa0JaaGOmaaqaaiabgkDi ElaaxMaacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG5b Gaai4jaiaacEcacqGHsislcaaIYaGaamyEaiaacEcacqGH9aqpcaaI YaWaaeWaaeaacaWG5bGaai4jaiabgkHiTiaaikdacaWG5baacaGLOa GaayzkaaaabaGaeyO0H4TaamyEaiaacEcacaGGNaGaeyOeI0IaaGOm aiaadMhacaGGNaGaeyOeI0IaaGOmaiaadMhacaGGNaGaey4kaSIaaG inaiaadMhacqGH9aqpcaaIWaaabaGaeyO0H4TaaCzcaiaaykW7caaM c8UaaGPaVlaaykW7caaMc8UaaGPaVlaadMhacaGGNaGaai4jaiabgk HiTiaaisdacaWG5bGaai4jaiabgUcaRiaaisdacaWG5bGaeyypa0Ja aGimaaqaaiaabIeacaqGLbGaaeOBaiaabogacaqGLbGaaeilaiaabc cacaqG0bGaaeiAaiaabwgacaqGGaGaaeOCaiaabwgacaqGXbGaaeyD aiaabMgacaqGYbGaaeyzaiaabsgacaqGGaGaaeizaiaabMgacaqGMb GaaeOzaiaabwgacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabgga caqGSbGaaeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAai aab+gacaqGUbGaaeiiaiaabMgacaqGZbGaaeiiaiaabMhacaqGNaGa ae4jaiaabccacaqGtaIaaeinaiaabMhacaqGNaGaaeiiaiaabUcaca qGGaGaaeinaiaabMhacaqGGaGaaeypaiaabccacaqGWaGaaeOlaaaa aa@CF90@

Q.5 Form a differential equation representing the given family of curves by eliminating arbitrary constants a and b.

y= e x ( a cos x+b sinx ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaake aaieqacaWF5bGaa8xpaiaa=vgadaahaaWcbeqaaiaa=HhaaaGcdaqa daqaaiaa=fgacaWFGaGaa83yaiaa=9gacaWFZbGaa8hiaiaa=Hhaca WFRaGaa8Nyaiaa=bcacaWHZbGaaCyAaiaah6gacaaMc8UaaCiEaaGa ayjkaiaawMcaaaaa@4BA7@

Ans

y= e x ( a cos x+b sinx )( i ) Differentiating both sides w.r.t. x, we get y= e x ( a sin x+b cosx )+ e x ( a cos x+b sinx ) y= e x ( a sin x+b cosx )+y[ Fromequation( i ) ] yy= e x ( a sin x+b cosx ) ( ii ) Againg,differentiating both sides w.r.t. x, we get yy= e x ( a cos xb sinx )+ e x ( a sin x+b cosx ) yy=y+yy [ From equation( ii ) ] y2y+2y=0 Hence, the required differential equation is y2y+2y=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8Mrpy0xbbf9q8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaaxMaacaWLjaGaaCzcaiaadMhacqGH9aqpcaWGLbWaaWba aSqabeaacaWG4baaaOWaaeWaaeaacaWGHbacbeGaa8hiaiGacogaca GGVbGaai4Caiaa=bcacaWG4bGaey4kaSIaamOyaiaa=bcaciGGZbGa aiyAaiaac6gacaaMc8UaamiEaaGaayjkaiaawMcaaiaac6cacaGGUa GaaiOlamaabmaabaGaamyAaaGaayjkaiaawMcaaaqaaiaabseacaqG PbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabM gacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqGIbGaae4B aiaabshacaqGObGaaeiiaiaabohacaqGPbGaaeizaiaabwgacaqGZb GaaeiiaiaabEhacaqGUaGaaeOCaiaab6cacaqG0bGaaeOlaiaabcca caqG4bGaaeilaiaabccacaqG3bGaaeyzaiaabccacaqGNbGaaeyzai aabshaaeaacaWLjaGaaCzcaiaaxMaacaWG5bGaai4jaiabg2da9iaa dwgadaahaaWcbeqaaiaadIhaaaGcdaqadaqaaiabgkHiTiaadggaca WFGaGaci4CaiaacMgacaGGUbGaa8hiaiaadIhacqGHRaWkcaWGIbGa a8hiaiGacogacaGGVbGaai4CaiaaykW7caWG4baacaGLOaGaayzkaa Gaey4kaSIaamyzamaaCaaaleqabaGaamiEaaaakmaabmaabaGaamyy aiaa=bcaciGGJbGaai4BaiaacohacaWFGaGaamiEaiabgUcaRiaadk gacaWFGaGaci4CaiaacMgacaGGUbGaaGPaVlaadIhaaiaawIcacaGL PaaaaeaacaWLjaGaaCzcaiaaxMaacaWG5bGaai4jaiabg2da9iaadw gadaahaaWcbeqaaiaadIhaaaGcdaqadaqaaiabgkHiTiaadggacaWF GaGaci4CaiaacMgacaGGUbGaa8hiaiaadIhacqGHRaWkcaWGIbGaa8 hiaiGacogacaGGVbGaai4CaiaaykW7caWG4baacaGLOaGaayzkaaGa ey4kaSIaamyEaiaaykW7caaMc8UaaGPaVpaadmaabaGaaeOraiaabk hacaqGVbGaaeyBaiaaykW7caaMc8UaaeyzaiaabghacaqG1bGaaeyy aiaabshacaqGPbGaae4Baiaab6gadaqadaqaaiaabMgaaiaawIcaca GLPaaaaiaawUfacaGLDbaaaeaacqGHshI3caWLjaGaaCzcaiaaykW7 caaMc8UaaGPaVlaaykW7caWG5bGaai4jaiabgkHiTiaadMhacqGH9a qpcaWGLbWaaWbaaSqabeaacaWG4baaaOWaaeWaaeaacqGHsislcaWG HbGaa8hiaiGacohacaGGPbGaaiOBaiaa=bcacaWG4bGaey4kaSIaam Oyaiaa=bcaciGGJbGaai4BaiaacohacaaMc8UaamiEaaGaayjkaiaa wMcaaiaaxMaacaWLjaGaaGPaVlaaxMaacaaMc8UaaGPaVlaaykW7ca GGUaGaaiOlaiaac6cadaqadaqaaiaadMgacaWGPbaacaGLOaGaayzk aaaabaGaaeyqaiaabEgacaqGHbGaaeyAaiaab6gacaqGNbGaaeilai aaykW7caqGKbGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGa aeOBaiaabshacaqGPbGaaeyyaiaabshacaqGPbGaaeOBaiaabEgaca qGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAaiaa bsgacaqGLbGaae4CaiaabccacaqG3bGaaeOlaiaabkhacaqGUaGaae iDaiaab6cacaqGGaGaaeiEaiaabYcacaqGGaGaae4DaiaabwgacaqG GaGaae4zaiaabwgacaqG0baabaGaaGPaVlaaykW7caaMc8UaaGPaVl aaykW7caaMc8UaaCzcaiaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaamyEaiaacEcaca GGNaGaeyOeI0IaamyEaiaacEcacqGH9aqpcaWGLbWaaWbaaSqabeaa caWG4baaaOWaaeWaaeaacqGHsislcaWGHbGaa8hiaiGacogacaGGVb Gaai4Caiaa=bcacaWG4bGaeyOeI0IaamOyaiaa=bcaciGGZbGaaiyA aiaac6gacaaMc8UaamiEaaGaayjkaiaawMcaaiabgUcaRiaadwgada ahaaWcbeqaaiaadIhaaaGcdaqadaqaaiabgkHiTiaadggacaWFGaGa ci4CaiaacMgacaGGUbGaa8hiaiaadIhacqGHRaWkcaWGIbGaa8hiai GacogacaGGVbGaai4CaiaaykW7caWG4baacaGLOaGaayzkaaaabaGa aGPaVlaaykW7caaMc8UaaGPaVlaaxMaacaaMc8UaaGPaVlaaykW7ca aMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPaVlaa ykW7caWG5bGaai4jaiaacEcacqGHsislcaWG5bGaai4jaiabg2da9i abgkHiTiaadMhacqGHRaWkcaWG5bGaai4jaiabgkHiTiaadMhacaWL jaGaaCzcaiaaxMaacaaMc8UaaGPaVlaaxMaadaWadaqaaiaabAeaca qGYbGaae4Baiaab2gacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaa bshacaqGPbGaae4Baiaab6gadaqadaqaaiaadMgacaWGPbaacaGLOa GaayzkaaaacaGLBbGaayzxaaaabaGaaGPaVlaaykW7caaMc8UaaGPa VlaaxMaacaaMc8UaaGPaVlaadMhacaGGNaGaai4jaiabgkHiTiaaik dacaWG5bGaai4jaiabgUcaRiaaikdacaWG5bGaeyypa0JaaGimaaqa aiaabIeacaqGLbGaaeOBaiaabogacaqGLbGaaeilaiaabccacaqG0b GaaeiAaiaabwgacaqGGaGaaeOCaiaabwgacaqGXbGaaeyDaiaabMga caqGYbGaaeyzaiaabsgacaqGGaGaaeizaiaabMgacaqGMbGaaeOzai aabwgacaqGYbGaaeyzaiaab6gacaqG0bGaaeyAaiaabggacaqGSbGa aeiiaiaabwgacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gaca qGUbGaaeiiaiaabMgacaqGZbGaaeiiaiaadMhacaGGNaGaai4jaiab gkHiTiaaikdacaWG5bGaai4jaiabgUcaRiaaikdacaWG5bGaeyypa0 JaaGimaiaac6caaaaa@F573@

Q.6 Form the differential equation of the family of circles touching the y-axis at origin.

Ans

The centre of the circle touching y-axis at origin lies on x-axis. Let the centre of circle be (a, 0).
Radius of circle will be ‘a’ because circle touches y-axis at origin. So, the equation of circle with centre (a, 0) and radius ‘a’ is as follows
(x – a)2 + y2 = a2
x2 – 2ax + a2 + y2 = a2
x2 + y2 = 2ax … (i)

Differentiating equation (i), w.r.t. x, we get

2x + 2yy’ = 2a

x + yy’ = a

Putting value of a in equation (i), we get

x2 + y2 = 2(x + yy’)x
= 2x2 + 2xyy’

y2 = x2 + 2xyy’

Thus, the required differential equation is 2xyy’ + x2 = y2.

Q.7 Form the differential equation of the family of parabolas having vertex at origin and axis along positive y-axis.

Ans

The equation of parabolas having vertex at origin and axis along positive y-axis is as follows
x2 = 4ay …(i)
Differentiating w.r.t. x, we get
2x = 4ay’
or (2x/y’) = 4a
Putting value of 4a in equation (i), we get
x2 = (2x/y’)y

x2y’ = 2xy

or xy’ = 2y
or xy’ – 2y = 0

Thus, the required differential equation is
xy’ – 2y = 0.

Q.8 Form the differential equation of the family of ellipses having foci on y-axis and centre at origin.

Ans

Theequation of the family of ellipses having foci on y-axis and centre at origin is as follows x 2 b 2 + y 2 a 2 =1 ( i ) Differentiating w.r.t. x, we get 2x b 2 + 2yy’ a 2 =0 x b 2 + yy’ a 2 =0 ( ii ) Again,differentiating w.r.t. x, we get 1 b 2 + 1 a 2 ( yy”+y’y’ )=0 1 b 2 + 1 a 2 { yy”+ ( y’ ) 2 }=0 1 b 2 = 1 a 2 { yy”+ ( y’ ) 2 } Substituting the value of 1 b 2 in equation ( ii ), we get x[ 1 a 2 { yy”+ ( y’ ) 2 } ]+ yy’ a 2 =0 x{ yy”+ ( y’ ) 2 }+yy=0 xyyx ( y ) 2 +yy=0 xyy+x ( y ) 2 yy=0 Thus, the required differential equation is xyy” + x ( y’ ) 2 –yy’ = 0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyzaiaaykW7caaMc8Uaaeyzaiaabgha caqG1bGaaeyyaiaabshacaqGPbGaae4Baiaab6gacaqGGaGaae4Bai aabAgacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabAgacaqGHbGa aeyBaiaabMgacaqGSbGaaeyEaiaabccacaqGVbGaaeOzaiaabccaca qGLbGaaeiBaiaabYgacaqGPbGaaeiCaiaabohacaqGLbGaae4Caiaa bccacaqGObGaaeyyaiaabAhacaqGPbGaaeOBaiaabEgacaqGGaGaae Ozaiaab+gacaqGJbGaaeyAaiaabccacaqGVbGaaeOBaiaabckaaeaa caqG5bGaaeylaiaabggacaqG4bGaaeyAaiaabohacaqGGaGaaeyyai aab6gacaqGKbGaaeiiaiaabogacaqGLbGaaeOBaiaabshacaqGYbGa aeyzaiaabccacaqGHbGaaeiDaiaabccacaqGVbGaaeOCaiaabMgaca qGNbGaaeyAaiaab6gacaqGGaGaaeyAaiaabohacaqGGaGaaeyyaiaa bohacaqGGaGaaeOzaiaab+gacaqGSbGaaeiBaiaab+gacaqG3bGaae 4CaiaabckaaeaacaaMc8UaaGPaVlaaykW7caGGGcGaaCzcamaalaaa baGaaeiEamaaCaaaleqabaGaaeOmaaaaaOqaaiaabkgadaahaaWcbe qaaiaabkdaaaaaaOGaaeiiaiabgUcaRiaabccadaWcaaqaaiaabMha daahaaWcbeqaaiaabkdaaaaakeaacaqGHbWaaWbaaSqabeaacaqGYa aaaaaakiabg2da9iaabgdacaGGGcGaaCzcaiaaxMaacqGHMacVcaqG GaWaaeWaaeaacaqGPbaacaGLOaGaayzkaaGaaiiOaaqaaiaabseaca qGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaa bMgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqG3bGaae OlaiaabkhacaqGUaGaaeiDaiaab6cacaqGGaGaaeiEaiaabYcacaqG GaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0bGaaeiOaaqaai aaykW7caaMc8UaaGPaVlaacckacaWLjaGaaGPaVpaalaaabaGaaeOm aiaabIhaaeaacaqGIbWaaWbaaSqabeaacaqGYaaaaaaakiabgUcaRm aalaaabaGaaeOmaiaabMhacaqG5bGaae4jaaqaaiaabggadaahaaWc beqaaiaabkdaaaaaaOGaeyypa0JaaeimaaqaaiaaykW7caaMc8UaaG PaVlaacckacaWLjaGaaGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGa aeiEaaqaaiaabkgadaahaaWcbeqaaiaabkdaaaaaaOGaey4kaSYaaS aaaeaacaqG5bGaaeyEaiaabEcaaeaacaqGHbWaaWbaaSqabeaacaqG Yaaaaaaakiabg2da9iaabcdacaGGGcGaaCzcaiaaxMaacqGHMacVca qGGaWaaeWaaeaacaqGPbGaaeyAaaGaayjkaiaawMcaaaqaaiaabgea caqGNbGaaeyyaiaabMgacaqGUbGaaeilaiaaykW7caqGKbGaaeyAai aabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGa aeyyaiaabshacaqGPbGaaeOBaiaabEgacaqGGaGaae4Daiaab6caca qGYbGaaeOlaiaabshacaqGUaGaaeiiaiaabIhacaqGSaGaaeiiaiaa bEhacaqGLbGaaeiiaiaabEgacaqGLbGaaeiDaiaabckaaeaacaaMc8 UaaGPaVlaaykW7caGGGcGaaCzcaiaaykW7daWcaaqaaiaabgdaaeaa caqGIbWaaWbaaSqabeaacaqGYaaaaaaakiabgUcaRmaalaaabaGaae ymaaqaaiaabggadaahaaWcbeqaaiaabkdaaaaaaOWaaeWaaeaacaqG 5bGaaeyEaiaabEcacaqGNaGaae4kaiaabMhacaqGNaGaaeyEaiaabE caaiaawIcacaGLPaaacqGH9aqpcaqGWaaabaGaaGPaVlaaykW7caaM c8UaaiiOaiaaxMaacaaMc8+aaSaaaeaacaqGXaaabaGaaeOyamaaCa aaleqabaGaaeOmaaaaaaGccqGHRaWkdaWcaaqaaiaabgdaaeaacaqG HbWaaWbaaSqabeaacaqGYaaaaaaakmaacmaabaGaaeyEaiaabMhaca qGNaGaae4jaiaabUcadaqadaqaaiaabMhacaqGNaaacaGLOaGaayzk aaWaaWbaaSqabeaacaqGYaaaaaGccaGL7bGaayzFaaGaeyypa0Jaae imaaqaaiaaykW7caaMc8UaaGPaVlaacckacaWLjaGaaCzcaiaaxMaa caWLjaGaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaae aacaqGXaaabaGaaeOyamaaCaaaleqabaGaaeOmaaaaaaGccqGH9aqp cqGHsisldaWcaaqaaiaabgdaaeaacaqGHbWaaWbaaSqabeaacaqGYa aaaaaakmaacmaabaGaaeyEaiaabMhacaqGNaGaae4jaiaabUcadaqa daqaaiaabMhacaqGNaaacaGLOaGaayzkaaWaaWbaaSqabeaacaqGYa aaaaGccaGL7bGaayzFaaaabaGaae4uaiaabwhacaqGIbGaae4Caiaa bshacaqGPbGaaeiDaiaabwhacaqG0bGaaeyAaiaab6gacaqGNbGaae iiaiaabshacaqGObGaaeyzaiaabccacaqG2bGaaeyyaiaabYgacaqG 1bGaaeyzaiaabccacaqGVbGaaeOzaiaabccadaWcaaqaaiaabgdaae aacaqGIbWaaWbaaSqabeaacaqGYaaaaaaakiaabccacaqGPbGaaeOB aiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaabMgacaqGVb GaaeOBaiaabccadaqadaqaaiaabMgacaqGPbaacaGLOaGaayzkaaGa aeilaiaabccacaqG3bGaaeyzaiaabccacaqGNbGaaeyzaiaabshaae aacaaMc8UaaeiEamaadmaabaGaeyOeI0YaaSaaaeaacaqGXaaabaGa aeyyamaaCaaaleqabaGaaeOmaaaaaaGcdaGadaqaaiaabMhacaqG5b Gaae4jaiaabEcacaqGRaWaaeWaaeaacaqG5bGaae4jaaGaayjkaiaa wMcaamaaCaaaleqabaGaaeOmaaaaaOGaay5Eaiaaw2haaaGaay5wai aaw2faaiabgUcaRmaalaaabaGaaeyEaiaabMhacaqGNaaabaGaaeyy amaaCaaaleqabaGaaeOmaaaaaaGccqGH9aqpcaqGWaaabaGaeyO0H4 TaaGPaVlaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaeyOeI0IaamiE amaacmaabaGaaeyEaiaabMhacaqGNaGaae4jaiaabUcadaqadaqaai aabMhacaqGNaaacaGLOaGaayzkaaWaaWbaaSqabeaacaqGYaaaaaGc caGL7bGaayzFaaGaey4kaSIaamyEaiaadMhacaGGNaGaeyypa0JaaG imaaqaaiabgkDiElaaykW7caaMc8UaaGPaVlaaykW7caaMc8UaaGPa VlaaykW7cqGHsislcaWG4bGaamyEaiaadMhacaGGNaGaai4jaiabgk HiTiaadIhadaqadaqaaiaadMhacaGGNaaacaGLOaGaayzkaaWaaWba aSqabeaacaaIYaaaaOGaey4kaSIaamyEaiaadMhacaGGNaGaeyypa0 JaaGimaaqaaiabgkDiElaaykW7caaMc8UaaGPaVlaaykW7caaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVlaaykW7caWG4bGaamyEaiaadMhaca GGNaGaai4jaiabgUcaRiaadIhadaqadaqaaiaadMhacaGGNaaacaGL OaGaayzkaaWaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyEaiaadM hacaGGNaGaeyypa0JaaGimaaqaaiaabsfacaqGObGaaeyDaiaaboha caqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGYbGaaeyzai aabghacaqG1bGaaeyAaiaabkhacaqGLbGaaeizaiaabccacaqGKbGa aeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshaca qGPbGaaeyyaiaabYgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaa bshacaqGPbGaae4Baiaab6gacaqGGaGaaeyAaiaabohacaqGGaGaae iEaiaabMhacaqG5bGaae4jaiaabEcacaqGGaGaae4kaiaabccacaqG 4bWaaeWaaeaacaqG5bGaae4jaaGaayjkaiaawMcaamaaCaaaleqaba GaaeOmaaaakiaabobicaqG5bGaaeyEaiaabEcacaqGGaGaaeypaiaa bccacaqGWaGaaeOlaaaaaa@4F96@

Q.9 Form the differential equation of the family of hyperbolas having foci on x-axis and centre at origin.

Ans

The differential equation of the family of hyperbolas having foci on x-axis and centre at origin​ is as follows x 2 a 2 y 2 b 2 =1 ( i ) Differentiating​ w.r.t. x, we get 2x a 2 2yy’ b 2 =0 x a 2 yy’ b 2 =0 ( ii ) Again,differentiating w.r.t. x, we get 1 a 2 1 b 2 ( yy”+y’y’ )=0 1 a 2 1 b 2 { yy”+ ( y’ ) 2 }=0 1 a 2 = 1 b 2 { yy”+ ( y’ ) 2 } Substituting the value of 1 a 2 in equation ( ii ), we get x[ 1 b 2 { yy”+ ( y’ ) 2 } ] yy’ b 2 =0 x{ yy”+ ( y’ ) 2 }yy=0 xyy+x ( y ) 2 yy=0 Thus, the required differential equation is xyy” + x ( y’ ) 2 –yy’=0. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabsfacaqGObGaaeyzaiaabccacaqGKbGaaeyAaiaabAga caqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyyai aabYgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPbGa ae4Baiaab6gacaqGGaGaae4BaiaabAgacaqGGaGaaeiDaiaabIgaca qGLbGaaeiiaiaabAgacaqGHbGaaeyBaiaabMgacaqGSbGaaeyEaiaa bccacaqGVbGaaeOzaiaabccacaqGObGaaeyEaiaabchacaqGLbGaae OCaiaabkgacaqGVbGaaeiBaiaabggacaqGZbGaaeiiaiaabIgacaqG HbGaaeODaiaabMgacaqGUbGaae4zaiaabccacaqGMbGaae4Baiaabo gacaqGPbaabaGaae4Baiaab6gacaqGGaGaaeiEaiaab2cacaqGHbGa aeiEaiaabMgacaqGZbGaaeiiaiaabggacaqGUbGaaeizaiaabccaca qGJbGaaeyzaiaab6gacaqG0bGaaeOCaiaabwgacaqGGaGaaeyyaiaa bshacaqGGcGaaGPaVlaab+gacaqGYbGaaeyAaiaabEgacaqGPbGaae OBaiaaygW7caqGGaGaaeyAaiaabohacaqGGaGaaeyyaiaabohacaqG GaGaaeOzaiaab+gacaqGSbGaaeiBaiaab+gacaqG3bGaae4Caaqaai aaxMaacaaMc8UaaGPaVlaaykW7caaMc8UaaCzcaiaaxMaacaaMc8Ua aGPaVlaaykW7caaMc8UaaGPaVpaalaaabaGaamiEamaaCaaaleqaba GaaGOmaaaaaOqaaiaadggadaahaaWcbeqaaiaaikdaaaaaaOGaeyOe I0YaaSaaaeaacaWG5bWaaWbaaSqabeaacaaIYaaaaaGcbaGaamOyam aaCaaaleqabaGaaGOmaaaaaaGccqGH9aqpcaaIXaGaaiiOaiaaxMaa caWLjaGaeyOjGWRaaeiiamaabmaabaGaaeyAaaGaayjkaiaawMcaai aacckaaeaacaqGebGaaeyAaiaabAgacaqGMbGaaeyzaiaabkhacaqG LbGaaeOBaiaabshacaqGPbGaaeyyaiaabshacaqGPbGaaeOBaiaabE gacaaMb8UaaeiiaiaabEhacaqGUaGaaeOCaiaab6cacaqG0bGaaeOl aiaabccacaqG4bGaaeilaiaabccacaqG3bGaaeyzaiaabccacaqGNb GaaeyzaiaabshaaeaacaaMc8UaaGPaVlaaykW7caGGGcGaaCzcaiaa ykW7caWLjaGaaCzcaiaaykW7daWcaaqaaiaabkdacaqG4baabaGaae yyamaaCaaaleqabaGaaeOmaaaaaaGccqGHsisldaWcaaqaaiaabkda caqG5bGaaeyEaiaabEcaaeaacaqGIbWaaWbaaSqabeaacaqGYaaaaa aakiabg2da9iaabcdaaeaacaaMc8UaaGPaVlaaykW7caGGGcGaaCzc aiaaykW7caaMc8UaaGPaVlaaykW7caWLjaGaaCzcaiaaykW7caaMc8 UaaGPaVlaaykW7daWcaaqaaiaabIhaaeaacaqGHbWaaWbaaSqabeaa caqGYaaaaaaakiabgkHiTmaalaaabaGaaeyEaiaabMhacaqGNaaaba GaaeOyamaaCaaaleqabaGaaeOmaaaaaaGccqGH9aqpcaqGWaGaaiiO aiaaxMaacaWLjaGaeyOjGWRaaeiiamaabmaabaGaaeyAaiaabMgaai aawIcacaGLPaaacaGGGcaabaGaaeyqaiaabEgacaqGHbGaaeyAaiaa b6gacaqGSaGaaGPaVlaabsgacaqGPbGaaeOzaiaabAgacaqGLbGaae OCaiaabwgacaqGUbGaaeiDaiaabMgacaqGHbGaaeiDaiaabMgacaqG UbGaae4zaiaabccacaqG3bGaaeOlaiaabkhacaqGUaGaaeiDaiaab6 cacaqGGaGaaeiEaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4z aiaabwgacaqG0baabaGaaGPaVlaaykW7caaMc8UaaiiOaiaaxMaaca aMc8UaaGPaVlaaykW7daWcaaqaaiaabgdaaeaacaqGHbWaaWbaaSqa beaacaqGYaaaaaaakiabgkHiTmaalaaabaGaaeymaaqaaiaabkgada ahaaWcbeqaaiaabkdaaaaaaOWaaeWaaeaacaqG5bGaaeyEaiaabEca caqGNaGaae4kaiaabMhacaqGNaGaaeyEaiaabEcaaiaawIcacaGLPa aacqGH9aqpcaqGWaaabaGaaGPaVlaaykW7caaMc8UaaiiOaiaaxMaa caaMc8+aaSaaaeaacaqGXaaabaGaaeyyamaaCaaaleqabaGaaeOmaa aaaaGccqGHsisldaWcaaqaaiaabgdaaeaacaqGIbWaaWbaaSqabeaa caqGYaaaaaaakmaacmaabaGaaeyEaiaabMhacaqGNaGaae4jaiaabU cadaqadaqaaiaabMhacaqGNaaacaGLOaGaayzkaaWaaWbaaSqabeaa caqGYaaaaaGccaGL7bGaayzFaaGaeyypa0JaaeimaaqaaiaaykW7ca aMc8UaaGPaVlaacckacaWLjaGaaCzcaiaaxMaacaWLjaGaaGPaVlaa ykW7caaMc8UaaGPaVlaaykW7caaMc8+aaSaaaeaacaqGXaaabaGaae yyamaaCaaaleqabaGaaeOmaaaaaaGccqGH9aqpdaWcaaqaaiaabgda aeaacaqGIbWaaWbaaSqabeaacaqGYaaaaaaakmaacmaabaGaaeyEai aabMhacaqGNaGaae4jaiaabUcadaqadaqaaiaabMhacaqGNaaacaGL OaGaayzkaaWaaWbaaSqabeaacaqGYaaaaaGccaGL7bGaayzFaaaaba Gaae4uaiaabwhacaqGIbGaae4CaiaabshacaqGPbGaaeiDaiaabwha caqG0bGaaeyAaiaab6gacaqGNbGaaeiiaiaabshacaqGObGaaeyzai aabccacaqG2bGaaeyyaiaabYgacaqG1bGaaeyzaiaabccacaqGVbGa aeOzaiaabccadaWcaaqaaiaabgdaaeaacaqGHbWaaWbaaSqabeaaca qGYaaaaaaakiaabccacaqGPbGaaeOBaiaabccacaqGLbGaaeyCaiaa bwhacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaiaabccadaqadaqaai aabMgacaqGPbaacaGLOaGaayzkaaGaaeilaiaabccacaqG3bGaaeyz aiaabccacaqGNbGaaeyzaiaabshaaeaacaaMc8UaaeiEamaadmaaba WaaSaaaeaacaqGXaaabaGaaeOyamaaCaaaleqabaGaaeOmaaaaaaGc daGadaqaaiaabMhacaqG5bGaae4jaiaabEcacaqGRaWaaeWaaeaaca qG5bGaae4jaaGaayjkaiaawMcaamaaCaaaleqabaGaaeOmaaaaaOGa ay5Eaiaaw2haaaGaay5waiaaw2faaiabgkHiTmaalaaabaGaaeyEai aabMhacaqGNaaabaGaaeOyamaaCaaaleqabaGaaeOmaaaaaaGccqGH 9aqpcaqGWaaabaGaeyO0H4TaaGPaVlaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaamiEamaacmaabaGaaeyEaiaabMhacaqGNaGaae4jaiaa bUcadaqadaqaaiaabMhacaqGNaaacaGLOaGaayzkaaWaaWbaaSqabe aacaqGYaaaaaGccaGL7bGaayzFaaGaeyOeI0IaamyEaiaadMhacaGG NaGaeyypa0JaaGimaaqaaiabgkDiElaaykW7caaMc8UaaGPaVlaayk W7caaMc8UaaGPaVlaaykW7caWG4bGaamyEaiaadMhacaGGNaGaai4j aiabgUcaRiaadIhadaqadaqaaiaadMhacaGGNaaacaGLOaGaayzkaa WaaWbaaSqabeaacaaIYaaaaOGaeyOeI0IaamyEaiaadMhacaGGNaGa eyypa0JaaGimaaqaaiaabsfacaqGObGaaeyDaiaabohacaqGSaGaae iiaiaabshacaqGObGaaeyzaiaabccacaqGYbGaaeyzaiaabghacaqG 1bGaaeyAaiaabkhacaqGLbGaaeizaiaabccacaqGKbGaaeyAaiaabA gacaqGMbGaaeyzaiaabkhacaqGLbGaaeOBaiaabshacaqGPbGaaeyy aiaabYgacaqGGaGaaeyzaiaabghacaqG1bGaaeyyaiaabshacaqGPb Gaae4Baiaab6gacaqGGaGaaeyAaiaabohacaqGGaGaaeiEaiaabMha caqG5bGaae4jaiaabEcacaqGGaGaae4kaiaabccacaqG4bWaaeWaae aacaqG5bGaae4jaaGaayjkaiaawMcaamaaCaaaleqabaGaaeOmaaaa kiaabccacaqGtaIaaeyEaiaabMhacaqGNaGaaeypaiaabcdacaqGUa aaaaa@4C8B@

Q.10 Form the differential equation of the family of circles having centre on y-axis and radius 3 units.

Ans

The centre of the circle lies on y-axis. Let the centre of circle be (0, b).
So, the equation of circle with centre (0, b) and radius 3 is as follows
x2 + (y – b)2 = 32 … (i)

Differentiating equation ( i ), w.r.t. x, we get 2x+2( y b ) y=0 x+( y b ) y=0 ( yb )= x y

Putting value of a in equation ( i ), we get

x 2 + ( x y ) 2 =9 x 2 y 2 + x 2 =9y 2 ( y ) 2 ( x 2 9 )+ x 2 =0 This is the required differential equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aaceqaaiaacckacaGGGcGaaiiOaiaacckacaGGGcGaaiiOaiaaccka caGGGcGaaiiOaiaaykW7caqG4bWaaWbaaSqabeaacaqGYaaaaOGaey 4kaSYaaeWaaeaadaWcaaqaaiabgkHiTiaabIhaaeaacaaMc8UaaeyE aiaacMbicaGGGcaaaaGaayjkaiaawMcaamaaCaaaleqabaGaaeOmaa aakiabg2da9iaaiMdacaGGGcaabaGaaCzcaiaaykW7caaMc8UaaGPa VlaaykW7caWG4bWaaWbaaSqabeaacGaMaIOmaaaakiaadMhacaGGNa WaaWbaaSqabeaacaaIYaaaaOGaaGPaVlabgUcaRiaadIhadaahaaWc beqaaiacyciIYaaaaOGaeyypa0JaaGyoaiaadMhacaGGNaWaaWbaaS qabeaacaaIYaaaaaGcbaWaaeWaaeaacaWG5bGaai4jaaGaayjkaiaa wMcaamaaCaaaleqabaGaaGOmaaaakmaabmaabaGaamiEamaaCaaale qabaGaiGjGikdaaaGccqGHsislcaaI5aaacaGLOaGaayzkaaGaaGPa VlabgUcaRiaadIhadaahaaWcbeqaaiacyciIYaaaaOGaeyypa0JaaG imaaqaaiaadsfacaWGObGaamyAaiaadohacaqGGaGaaeyAaiaaboha caqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabkhacaqGLbGaaeyCai aabwhacaqGPbGaaeOCaiaabwgacaqGKbGaaeiiaiaabsgacaqGPbGa aeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDaiaabMgaca qGHbGaaeiBaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiDaiaa bMgacaqGVbGaaeOBaiaab6caaaaa@A1C0@

Q.11

Which of the following differential equations has y = c1 ex + c2 ex as the general solution?(A)d2ydx2 + y = 0    (B)d2ydx2y = 0  (C)d2ydx2 + 1 = 0 (D)d2ydx21 = 0

Ans

            y=c1ex+c2ex  ...(i)Differentiating w.r.t. x, we get      dydx=c1exc2exAgain,​ differentiating w.r.t. x, we get  d2ydx2=c1ex+c2ex          =yord2ydx2y=0Thus,​​ option B is correct.

Q.12

Which of the following differential equations has y = x as one of its particular solution? ( A ) d 2 y d x 2 x 2 dy dx +xy=x ( B ) d 2 y d x 2 x dy dx +xy=x ( C ) d 2 y d x 2 x 2 dy dx +xy=0 ( D ) d 2 y d x 2 +x dy dx +xy=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabEfacaqGObGaaeyAaiaabogacaqGObGaaeiiaiaab+ga caqGMbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGMbGaae4Bai aabYgacaqGSbGaae4BaiaabEhacaqGPbGaaeOBaiaabEgacaqGGaGa aeizaiaabMgacaqGMbGaaeOzaiaabwgacaqGYbGaaeyzaiaab6gaca qG0bGaaeyAaiaabggacaqGSbGaaeiiaiaabwgacaqGXbGaaeyDaiaa bggacaqG0bGaaeyAaiaab+gacaqGUbGaae4CaiaabccacaqGObGaae yyaiaabohacaqGGaGaaeyEaiaabccacaqG9aGaaeiiaiaabIhacaqG GaGaaeyyaiaabohacaqGGaaabaGaae4Baiaab6gacaqGLbGaaeiiai aab+gacaqGMbGaaeiiaiaabMgacaqG0bGaae4CaiaabccacaqGWbGa aeyyaiaabkhacaqG0bGaaeyAaiaabogacaqG1bGaaeiBaiaabggaca qGYbGaaeiiaiaabohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaa b+gacaqGUbGaae4paaqaamaabmaabaGaaeyqaaGaayjkaiaawMcaai aaykW7caaMc8+aaSaaaeaaieqacaWFKbWaaWbaaSqabeaacaWFYaaa aOGaa8xEaaqaaiaa=rgacaWF4bWaaWbaaSqabeaacaWFYaaaaaaaki abgkHiTiaa=HhadaahaaWcbeqaaiaa=jdaaaGcdaWcaaqaaiaahsga caWF5baabaGaaCizaiaahIhaaaGaa83kaiaa=HhacaWF5bGaa8xpai aa=HhacaaMc8UaaGPaVlaaykW7caaMc8UaaCzcaiaaxMaadaqadaqa aiaabkeaaiaawIcacaGLPaaacaaMc8UaaGPaVpaalaaabaGaa8hzam aaCaaaleqabaGaa8Nmaaaakiaa=LhaaeaacaWFKbGaa8hEamaaCaaa leqabaGaa8NmaaaaaaGccqGHsislcaWF4bWaaSaaaeaacaWHKbGaa8 xEaaqaaiaahsgacaWH4baaaiaa=TcacaWF4bGaa8xEaiaa=1dacaWF 4baabaWaaeWaaeaacaqGdbaacaGLOaGaayzkaaGaaGPaVlaaykW7da Wcaaqaaiaa=rgadaahaaWcbeqaaiaa=jdaaaGccaWF5baabaGaa8hz aiaa=HhadaahaaWcbeqaaiaa=jdaaaaaaOGaeyOeI0Iaa8hEamaaCa aaleqabaGaa8NmaaaakmaalaaabaGaaCizaiaa=LhaaeaacaWHKbGa aCiEaaaacaWFRaGaa8hEaiaa=LhacaWF9aGaa8hmaiaaxMaacaWLja GaaCzcamaabmaabaGaaeiraaGaayjkaiaawMcaaiaaykW7caaMc8+a aSaaaeaacaWFKbWaaWbaaSqabeaacaWFYaaaaOGaa8xEaaqaaiaa=r gacaWF4bWaaWbaaSqabeaacaWFYaaaaaaakiabgUcaRiaa=HhadaWc aaqaaiaahsgacaWF5baabaGaaCizaiaahIhaaaGaa83kaiaa=Hhaca WF5bGaa8xpaiaa=bdaaaaa@E777@

Ans

We have y = x ( i ) Differentiating w.r.t. x, we get dy dx =1 ( ii ) Again,​ differentiating w.r.t. x, we get d 2 y d x 2 =0 ( iii ) Putting values of y, dy dx and d 2 y d x 2 in each given options, ( A )L.H.S.= d 2 y d x 2 x 2 dy dx +xy =0 x 2 ( 1 )+x( x ) =0R.H.S. Thus, it is not correct option. ( B )L.H.S.= d 2 y d x 2 x dy dx +xy =0x( x )+x( x ) =0R.H.S. Thus, it is not correct option. ( C )L.H.S.= d 2 y d x 2 x 2 dy dx +xy =0 x 2 ( 1 )+x( x ) =0=R.H.S. Thus, it is correct option. Hence, the correct solution is option C. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1B TfMBaebbnrfifHhDYfgasaacH8MrFz0xbbf9v8WrFfeuY=Hhbbf9v8 qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9 q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGaaeqabaWaaqaafaaakq aabeqaaiaabEfacaqGLbGaaeiiaiaabIgacaqGHbGaaeODaiaabwga caqGGaGaaeyEaiaabccacaqG9aGaaeiiaiaabIhacaGGGcGaaiiOai aacckacaqGMaIaaeiiamaabmaabaGaaeyAaaGaayjkaiaawMcaaaqa aiaabseacaqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUb GaaeiDaiaabMgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabcca caqG3bGaaeOlaiaabkhacaqGUaGaaeiDaiaab6cacaqGGaGaaeiEai aabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0baa baGaaCzcaiaaxMaadaWcaaqaaiaadsgacaWG5baabaGaamizaiaadI haaaGaeyypa0JaaGymaiaaxMaacaWLjaGaaCzcaiaab6cacaqGUaGa aeOlamaabmaabaGaaeyAaiaabMgaaiaawIcacaGLPaaaaeaacaqGbb Gaae4zaiaabggacaqGPbGaaeOBaiaabYcacaaMb8Uaaeiiaiaabsga caqGPbGaaeOzaiaabAgacaqGLbGaaeOCaiaabwgacaqGUbGaaeiDai aabMgacaqGHbGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqG3bGa aeOlaiaabkhacaqGUaGaaeiDaiaab6cacaqGGaGaaeiEaiaabYcaca qGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgacaqG0baabaGaaCzc aiaaxMaadaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG5b aabaGaamizaiaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaeyypa0Ja aGimaiaaxMaacaWLjaGaaCzcaiaab6cacaqGUaGaaeOlamaabmaaba GaaeyAaiaabMgacaqGPbaacaGLOaGaayzkaaaabaGaaeiuaiaabwha caqG0bGaaeiDaiaabMgacaqGUbGaae4zaiaabccacaqG2bGaaeyyai aabYgacaqG1bGaaeyzaiaabohacaqGGaGaae4BaiaabAgacaqGGaGa aeyEaiaabYcacaqGGaWaaSaaaeaacaWGKbGaamyEaaqaaiaadsgaca WG4baaaiaabccacaWGHbGaamOBaiaadsgacaqGGaWaaSaaaeaacaWG KbWaaWbaaSqabeaacaaIYaaaaOGaamyEaaqaaiaadsgacaWG4bWaaW baaSqabeaacaaIYaaaaaaakiaabccacaqGPbGaaeOBaiaabccacaqG LbGaaeyyaiaabogacaqGObGaaeiiaiaabEgacaqGPbGaaeODaiaabw gacaqGUbGaaeiiaiaab+gacaqGWbGaaeiDaiaabMgacaqGVbGaaeOB aiaabohacaqGSaaabaWaaeWaaeaacaqGbbaacaGLOaGaayzkaaGaaG PaVlaaykW7caqGmbGaaeOlaiaabIeacaqGUaGaae4uaiaac6cacqGH 9aqpdaWcaaqaaiaadsgadaahaaWcbeqaaiaaikdaaaGccaWG5baaba GaamizaiaadIhadaahaaWcbeqaaiaaikdaaaaaaOGaeyOeI0IaamiE amaaCaaaleqabaGaaGOmaaaakmaalaaabaGaamizaiaadMhaaeaaca WGKbGaamiEaaaacqGHRaWkcaWG4bGaamyEaaqaaiaaxMaacaWLjaGa eyypa0JaaGimaiabgkHiTiaadIhadaahaaWcbeqaaiaaikdaaaGcda qadaqaaiaaigdaaiaawIcacaGLPaaacqGHRaWkcaWG4bWaaeWaaeaa caWG4baacaGLOaGaayzkaaaabaGaaCzcaiaaxMaacqGH9aqpcaaIWa GaeyiyIKRaaeOuaiaab6cacaqGibGaaeOlaiaabofacaqGUaaabaGa aeivaiaabIgacaqG1bGaae4CaiaabYcacaqGGaGaaeyAaiaabshaca qGGaGaaeyAaiaabohacaqGGaGaaeOBaiaab+gacaqG0bGaaeiiaiaa bogacaqGVbGaaeOCaiaabkhacaqGLbGaae4yaiaabshacaqGGaGaae 4BaiaabchacaqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaqaamaabmaa baGaaeOqaaGaayjkaiaawMcaaiaaykW7caqGmbGaaeOlaiaabIeaca qGUaGaae4uaiaab6cacqGH9aqpcaaMc8UaaGPaVpaalaaabaGaamiz amaaCaaaleqabaGaaGOmaaaakiaadMhaaeaacaWGKbGaamiEamaaCa aaleqabaGaaGOmaaaaaaGccqGHsislcaWG4bWaaSaaaeaacaWGKbGa amyEaaqaaiaadsgacaWG4baaaiabgUcaRiaadIhacaWG5baabaGaaC zcaiaaxMaacqGH9aqpcaaIWaGaeyOeI0IaamiEamaabmaabaGaamiE aaGaayjkaiaawMcaaiabgUcaRiaadIhadaqadaqaaiaadIhaaiaawI cacaGLPaaaaeaacaWLjaGaaCzcaiabg2da9iaaicdacqGHGjsUcaqG sbGaaeOlaiaabIeacaqGUaGaae4uaiaab6caaeaacaqGubGaaeiAai aabwhacaqGZbGaaeilaiaabccacaqGPbGaaeiDaiaabccacaqGPbGa ae4CaiaabccacaqGUbGaae4BaiaabshacaqGGaGaae4yaiaab+gaca qGYbGaaeOCaiaabwgacaqGJbGaaeiDaiaabccacaqGVbGaaeiCaiaa bshacaqGPbGaae4Baiaab6gacaqGUaaabaWaaeWaaeaacaqGdbaaca GLOaGaayzkaaGaaeitaiaab6cacaqGibGaaeOlaiaabofacaqGUaGa eyypa0ZaaSaaaeaacaWGKbWaaWbaaSqabeaacaaIYaaaaOGaamyEaa qaaiaadsgacaWG4bWaaWbaaSqabeaacaaIYaaaaaaakiabgkHiTiaa dIhadaahaaWcbeqaaiaaikdaaaGcdaWcaaqaaiaadsgacaWG5baaba GaamizaiaadIhaaaGaey4kaSIaamiEaiaadMhaaeaacaWLjaGaaCzc aiabg2da9iaaicdacqGHsislcaWG4bWaaWbaaSqabeaacaaIYaaaaO WaaeWaaeaacaaIXaaacaGLOaGaayzkaaGaey4kaSIaamiEamaabmaa baGaamiEaaGaayjkaiaawMcaaaqaaiaaxMaacaWLjaGaeyypa0JaaG imaiabg2da9iaabkfacaqGUaGaaeisaiaab6cacaqGtbGaaeOlaaqa aiaabsfacaqGObGaaeyDaiaabohacaqGSaGaaeiiaiaabMgacaqG0b GaaeiiaiaabMgacaqGZbGaaeiiaiaabogacaqGVbGaaeOCaiaabkha caqGLbGaae4yaiaabshacaqGGaGaae4BaiaabchacaqG0bGaaeyAai aab+gacaqGUbGaaeOlaaqaaiaabIeacaqGLbGaaeOBaiaabogacaqG LbGaaeilaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae4yaiaab+ gacaqGYbGaaeOCaiaabwgacaqGJbGaaeiDaiaabccacaqGZbGaae4B aiaabYgacaqG1bGaaeiDaiaabMgacaqGVbGaaeOBaiaabccacaqGPb Gaae4CaiaabccacaqGVbGaaeiCaiaabshacaqGPbGaae4Baiaab6ga caqGGaGaae4qaiaab6caaaaa@DA01@

Please register to view this section

FAQs (Frequently Asked Questions)

1. Where to find reliable NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3?

The Extramarks’ website provides authentic and high-quality online versions of the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3. The content available on the Extramarks learning portal like the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 is curated by subject experts and is reliable, up-to-date, and comprehensive. The content within the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 has been compiled in consideration of the latest NCERT academic curriculum. The solutions provided have been designed to ensure efficiency, simplicity, and effectiveness. It has also been ensured that there would be a minimum of discrepancies between the content being delivered to students by their teachers in the classroom and the online learning resources being provided to them by Extramarks. 

2. What are the benefits of the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3?

The NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 curated by the Extramarks’ website are well-organised. These solutions will enhance the hard work and dedication of students and will aid and encourage self-learning among them. The NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 are organised efficiently following the latest NCERT syllabus and would be helpful to students who are seeking answers to unresolved queries and doubts.  Instead of having to scour the vast expanse of the Internet for solutions to problems relating to the theme of differential equations, students can go straight to the Extramarks website.This learning platform provides the NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 in one place in high-quality and easy-to-understand calculations.

3. Are Differential Equations a complex and difficult topic in the NCERT-prescribed curriculum for Class 12 for Mathematics?

While Differential Equations can indeed be considered a versatile and complex theme which covers a variety of topics within the prescribed NCERT academic curriculum for Mathematics in Class 12, they are quite useful. Not only are they fundamental areas of study for a wide variety of research fields and professional arenas of study, but they are also quite interesting once one has the necessary conceptual clarity. The NCERT Solutions Class 12 Maths Chapter 9 Exercise 9.3 delivered by Extramarks can be very helpful in cultivating this clarity.