NCERT Solutions for Class 7 Maths Chapter 1 Integers (EX 1.4) Exercise 1.4

Students must solve all the questions from the NCERT textbooks for thorough preparation for the exams. Using the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 can help the students in clarifying most of their doubts. Students should go through the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 when answering questions from challenging chapters or topics.

After using the solutions to answer a specific question, students must try answering that question later on without using the solutions; this will help students get accustomed to various question types. If students have difficulty with a particular question or topic, they can always seek their teacher’s assistance.

NCERT Solutions for Class 7 Maths Chapter 1 Integers (EX 1.4) Exercise 1.4

The NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4, are easily accessible via the Extramarks website and mobile application. Using the best study materials as soon as students begin studying for the exam simplifies the process. Class 7 is extremely stressful, and students are unsure how to manage the preparation for all of their subjects for exams. It is critical to have a proper plan to ensure holistic preparation for the exams.

Students who prepare with the help of solutions for various subjects like the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 can thoroughly prepare for examinations of all subjects. It enables them to assess what they have learned in less time. They also save time because they are not required to learn from textbooks. Once students are done solving the question from Class 7 Maths Exercise 1.4, they can check their answers with the help of NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4.

Important Points to Remember from NCERT Solutions Class 7 Exercise 1.4 Chapter 1 (include Pdf)

The NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 focuses on distinguishing Integers from higher sets and their characteristics and functions. Non-fractional Integers can have a value of one, zero, or both positive and negative sides. Due to their prefixed signs, these numbers are crucial when performing arithmetic operations. The NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 thoroughly explains all the key ideas based on the characteristics of these numbers and includes examples.

These NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 cover how to represent Integers on a number line and review the concepts covered with appropriate examples. Students can learn about Integers and their properties in-depth by studying the sample problems from this chapter.

Students will learn the proper method for solving Integer arithmetic operations. Students will be guided through different questions and the step-by-step answers to each question as they practice these exercises regularly. The characteristics of Integers and their arithmetic operations are the most crucial topics (addition, subtraction, multiplication, and division).

These Class 7 Mathematics NCERT Solutions Chapter 1 also cover the distributive property of Integer multiplication and the properties of Commutativity, Associativity under addition, and multiplication. Integers in Chapter 1 of Class 7 Math. There are 30 questions in Chapter 1, with 9 being easy, 10 being moderate, and 11 being long answer questions.

Access NCERT Solutions Class 7 Mathematics Chapter 1 – Integer

Students can learn about the Mathematical ideas behind Integers from Extramarks’ NCERT Solutions for Class 7 Maths Chapter 1 in PDF format. Solutions for all subjects, including NCERT Maths Class 7 Chapter 1, have been created by Extramarks’ experts. These include numerous time-saving shortcuts and step-by-step explanations to help students pass exams faster. Students may download the NCERT Solutions in PDF format to better understand the exam’s most crucial questions.

Exercise 1.4

On the official Extramarks’ website, NCERT Solutions for Class 7 Mathematics Chapter-1 PDFs are available for download. Students can review the Integers Class 7 Chapter whenever they want by downloading the PDF for the same.

The subject-matter specialists have a wealth of knowledge and are experts at explaining problems, providing solutions, and helping students in comprehending concepts quickly. If students have doubts or queries they can get answers by registering on Extramarks’ official website.

Students will learn fundamental information about Integers and their properties, such as identities for addition and multiplication as well as commutative, associative, and distributive properties, in the first chapter of NCERT Maths for Class 7. Extramarks offers the option of downloading the NCERT solutions for Chapter 1 of Class 7 Mathematics in PDF format.

NCERT Solutions for Class 7 Maths

By using the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4, students can easily understand the concept of Integer division. Students can become experts in the ideas of Integer division and its properties by repeatedly practising the questions with the help of these solutions. Students will learn every nuance of Integers and their properties by repeatedly working through Exercise 1.4 from Class 7 Maths NCERT Solutions. Students will be taught about the Integer division step-by-step method by using NCERT solutions for Class 7 maths chapter 1 exercise 1.4. Experts in the field chose most of the questions for Class 7 Maths Exercise 1.4. Therefore, students must carefully study and solve the questions with the help of NCERT solutions.

NCERT Solutions for Class 7 Maths Chapter 1 – Exercise 1.4 Questions

Students will learn in-depth information about Integers and how their preceding sign is affected by going through the NCERT Class 7 Maths Chapter 1 Exercise 1.4.

(a) Exercise 1.4 Class 7 Question 1

In order to answer the first question in this exercise from the NCERT books online, students must solve Integer expressions. It has 9 part questions that call for the solution of Integer expressions.

Candidates must comprehend Integer characteristics and how Addition, Multiplication, Division, and other Mathematical operations affect them. Students having trouble understanding these concepts can refer to NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4.

(b) Exercise 1.4 Class 7 Question 2

In this problem, a three-variable expression with the letters a, b, and c is given. Students must use the various Integer values provided in the question to determine whether or not this equation is true. Students can prepare for their upcoming exams by practising these questions using the shortcuts described in the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4.

(c) Exercise 1.4 Class 7 Question 3

Students can download the Class 7 Maths Chapter 1 Exercise 1.4 Solutions from Extramarks’ website. To create meaningful Integer equations, students must fill in the blanks with the appropriate Integer values in this question about Integers. There are sub-questions in this question, and the proper Integer value must be entered for each of these questions.

(d) Exercise 1.4 Class 7 Question 4

The NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4, examines a student’s knowledge of the subject by asking about five different Integer combinations that could result in the same answer. Candidates can use the same method to analyse and respond to the questions. Given the proper organisation of the solutions and their explanation as crafted by the experts of the Extramarks team, the NCERT solutions are the most preferred study materials by the students.

(e) Exercise 1.4 Class 7 Question 5

Students can practice questions based on the Integer concepts they learn with the help of NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4. Regarding this inquiry, students are asked to provide an answer to the problems, which deal with the temperature at various points during the day. Candidates can use the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 to find the precise answers to these questions. These solutions prepare students for questions like these as well as ones similar to them.

(f) Exercise 1.4 Class 7 Question 6

The most recent edition of NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 PDF includes questions like question 6 to help students better understand this mathematical concept. To be able to respond to these questions, candidates must evaluate and use their logical and reasoning abilities in a test set.

(g) Exercise 1.4 Class 7 Question 7

Students can answer these questions using their fundamental knowledge of mathematical ideas, such as Integers, as represented in Exercise 1.4, Class 7. In order to answer these questions, students can use their study guide as a resource to develop a thorough understanding of the subject.

NCERT Solutions for Class 7 Maths Chapter 1 – Overview of Other Exercise Questions

The CBSE board’s specified curriculum is followed when compiling the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4, which considers the students’ understanding of Class 7. The other exercises also contain various question types to help students comprehend the significance of learning Integers in daily life. It applies to Exercises 1.1, 1.2, and 1.3.

Students are taught everything from fundamental ideas about how to assign an Integer a positive or negative sign to complex knowledge of mathematical operations on Integers. Additionally, they must determine which of the two Integer values is higher by comparing them.

However, developing a deeper understanding of these concepts can be tough without study resources like these solutions. Students can read through these solutions to practice the questions and prepare for upcoming tests.

NCERT Solutions for Class 7

Mathematics is a crucial subject for CBSE Class 7 students. Students study Integers in Chapter 1, complete significant exercises, and pick up important concepts. In order to prepare for their yearly exams, the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 are one of the most helpful resources. The experts at Extramarks have developed the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4, to help students comprehend the fundamental ideas and effectively resolve all their issues.

One of the most crucial chapters in Class 7 Mathematics is Integers because it teaches the fundamentals needed for students to succeed in the following grades. Students can quickly move forward and answer any type of exam questions once they start paying attention to the solutions.

The NCERT textbook contains a sizable number of questions that students can answer and practice. Students can improve their grades in Class 7 exams by starting to practice with the help of NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4. The NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 should be consulted by students having trouble with Chapter 1. On the Extramarks website and mobile application, students can easily access the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4.

If students properly commit to the subject, every student can achieve a Mathematics grade in Class 8 higher than 90%. At this point in a student’s education, Mathematics is very important, so it must not be overlooked. Students can achieve the highest marks possible in the subject with the right instructions and preparation. As the fundamental building block for higher Mathematics in classes 8 and 9, etc., studying Mathematics is essential for students. Students should adhere to their schedule to receive good grades and percentages in Mathematics because it will help them adapt quickly.

Always remember that the earlier students begin their preparation, the better. Beginning exam preparation early will enable students to stay ahead of the game and finish their syllabus more quickly so that they have enough time for revision. Students can revise more than once and feel more confident about their exam preparation. Starting the exam preparation early will leave students with extra time to relax because Mathematics is a subject that requires consistent practice and grinding.

Students can access a variety of learning materials from Extramarks’ website and mobile application. These learning materials include a wide range of NCERT Solutions, past years’ papers, sample question papers, and revision notes, among others. These solutions are not limited to a particular class or subject; they are available for all classes and subjects. Students can also register on the Extramarks website to get access to live doubt-solving sessions with teachers who have years of experience in the relevant fields. Extramarks’ learning tools can help students boost their exam preparation and score higher marks in their examinations.


Evaluate each of the following:(a)(30)÷10(b)50÷(5)(c)(36)÷(9)(d)(49)÷(49)(e)13÷[(2)+1](f)0÷(12)(g)(31)÷[(30)+(1)](h)[(36)÷12]÷3(i)[(6)+5)]÷[(2)+1]


( a ) ( 30 ) ÷ 10= 3 ( b ) 50 ÷ ( 5 )= 10 ( c ) ( 36 ) ÷ ( 9 )= 4 ( d ) ( 49 ) ÷ ( 49 )= 1 ( e ) 13 ÷ [ ( 2 ) + 1 ]=13÷[ 1 ]= 13 ( f ) 0 ÷ ( 12 )= 0 ( g ) ( 31 ) ÷ [ ( 30 ) + ( 1 ) ]=( 31 )÷[ 31 ]= 1 ( h ) [ ( 36 ) ÷ 12 ] ÷ 3=[ 3 ]÷3= 1 ( i )[ ( 6 ) + 5 )] ÷ [( 2 ) + 1]=[ 1 ]÷[ 1 ]= 1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaadaqadaqaaiaabggaaiaawIcacaGLPaaa caqGGaWaaeWaaeaacqGHsislcaqGZaGaaGimaaGaayjkaiaawMcaai aabccacqGH3daUcaqGGaGaaeymaiaaicdacqGH9aqpdaqjEaqaaiab gkHiTiaaiodaaaaabaWaaeWaaeaacaqGIbaacaGLOaGaayzkaaGaae iiaiaabwdacaaIWaGaaeiiaiabgEpa4kaabccadaqadaqaaiabgkHi TiaabwdaaiaawIcacaGLPaaacqGH9aqpdaqjEaqaaiabgkHiTiaaig dacaaIWaaaaaqaamaabmaabaGaae4yaaGaayjkaiaawMcaaiaabcca daqadaqaaiabgkHiTiaabodacaqG2aaacaGLOaGaayzkaaGaaeiiai abgEpa4kaabccadaqadaqaaiabgkHiTiaabMdaaiaawIcacaGLPaaa cqGH9aqpdaqjEaqaaiaaisdaaaaabaWaaeWaaeaacaqGKbaacaGLOa GaayzkaaGaaeiiamaabmaabaGaeyOeI0IaaeiiaiaabsdacaqG5aaa caGLOaGaayzkaaGaaeiiaiabgEpa4kaabccadaqadaqaaiaabsdaca qG5aaacaGLOaGaayzkaaGaeyypa0ZaauIhaeaacqGHsislcaaIXaaa aaqaamaabmaabaGaaeyzaaGaayjkaiaawMcaaiaabccacaqGXaGaae 4maiaabccacqGH3daUcaqGGaWaamWaaeaadaqadaqaaiabgkHiTiaa bkdaaiaawIcacaGLPaaacaqGGaGaey4kaSIaaeiiaiaabgdaaiaawU facaGLDbaacqGH9aqpcaaIXaGaaG4maiabgEpa4oaadmaabaGaeyOe I0IaaGymaaGaay5waiaaw2faaiabg2da9maaL4babaGaeyOeI0IaaG ymaiaaiodaaaaabaWaaeWaaeaacaqGMbGaaeiiaaGaayjkaiaawMca aiaabccacaaIWaGaaeiiaiabgEpa4kaabccadaqadaqaaiabgkHiTi aabgdacaqGYaaacaGLOaGaayzkaaGaeyypa0ZaauIhaeaacaaIWaaa aaqaaiaacckadaqadaqaaiaabEgaaiaawIcacaGLPaaacaqGGaWaae WaaeaacqGHsislcaqGZaGaaeymaaGaayjkaiaawMcaaiaabccacqGH 3daUcaqGGaWaamWaaeaadaqadaqaaiabgkHiTiaabodacaaIWaaaca GLOaGaayzkaaGaaeiiaiabgUcaRiaabccadaqadaqaaiabgkHiTiaa bgdaaiaawIcacaGLPaaaaiaawUfacaGLDbaacqGH9aqpdaqadaqaai abgkHiTiaaiodacaaIXaaacaGLOaGaayzkaaGaey49aG7aamWaaeaa cqGHsislcaaIZaGaaGymaaGaay5waiaaw2faaiabg2da9maaL4baba GaaGymaaaaaeaacaGGGcWaaeWaaeaacaqGObaacaGLOaGaayzkaaGa aeiiamaadmaabaWaaeWaaeaacqGHsislcaqGZaGaaeOnaaGaayjkai aawMcaaiaabccacqGH3daUcaqGGaGaaeymaiaabkdaaiaawUfacaGL DbaacaqGGaGaey49aGRaaeiiaiaabodacaqG9aWaamWaaeaacqGHsi slcaaIZaaacaGLBbGaayzxaaGaey49aGRaaG4maiabg2da9maaL4ba baGaeyOeI0IaaGymaaaaaeaadaqadaqaaiaabMgaaiaawIcacaGLPa aadaqcsaqaamaabmaabaGaeyOeI0IaaeiiaiaabAdaaiaawIcacaGL PaaacaqGGaGaey4kaSIaaeiiaiaabwdaaiaawUfacaGLPaaadaqcJa qaaiaabccacqGH3daUcaqGGaaacaGLDbGaay5waaWaaeWaaeaacqGH sislcaqGYaaacaGLOaGaayzkaaGaaeiiaiabgUcaRiaabccacaqGXa Gaaiyxaiabg2da9maadmaabaGaeyOeI0IaaGymaaGaay5waiaaw2fa aiabgEpa4oaadmaabaGaeyOeI0IaaGymaaGaay5waiaaw2faaiabg2 da9maaL4babaGaaGymaaaaaaaa@0B6D@


Verify that a÷b+c¹a÷b+a÷cfor each of thefollowing.values of a, b and c.(a) a=12, b=-4, c=2(b) a=(-10), b=1, c=1




Fill in the blanks: a369 ÷ _____ = 369 b–75 ÷ _____ = –1c–206 ÷ _____ = 1 d– 87 ÷ _____ = 87e_____ ÷ 1 = – 87 f_____ ÷ 48 = –1g20 ÷ _____ = –2 h_____ ÷ 4 = –3


( a ) 369 ÷ 1 _ = 369 ( b ) ( 75 ) ÷ 75 _ = 1 ( c ) ( 206 ) ÷ 206 _ = 1 ( d )87 ÷ 1 _ = 87 ( e ) 87 _ ÷ 1 = 87 ( f ) 48 _ ÷ 48 = 1 ( g ) 20 ÷ 10 _ _ = 2 ( h ) 12 _ ÷ ( 4 ) = 3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaadaqadaqaaiaabggaaiaawIcacaGLPaaa caqGGaGaae4maiaabAdacaqG5aGaaeiiaiabgEpa4kaabccadaadaa qaamaaL4babaGaaGymaaaaaaGaaeiiaiabg2da9iaabccacaqGZaGa aeOnaiaabMdaaeaadaqadaqaaiaabkgaaiaawIcacaGLPaaacaqGGa WaaeWaaeaacqGHsislcaqG3aGaaeynaaGaayjkaiaawMcaaiaabcca cqGH3daUcaqGGaWaaWaaaeaadaqjEaqaaiaaiEdacaaI1aaaaaaaca qGGaGaeyypa0JaaeiiaiabgkHiTiaabgdaaeaadaqadaqaaiaaboga aiaawIcacaGLPaaacaqGGaWaaeWaaeaacqGHsislcaqGYaGaaGimai aabAdaaiaawIcacaGLPaaacaqGGaGaey49aGRaaeiiamaamaaabaWa auIhaeaacqGHsislcaaIYaGaaGimaiaaiAdaaaaaaiaabccacqGH9a qpcaqGGaGaaeymaaqaamaabmaabaGaaeizaaGaayjkaiaawMcaaiab gkHiTiaabIdacaqG3aGaaeiiaiabgEpa4kaabccadaadaaqaamaaL4 babaGaeyOeI0IaaGymaaaaaaGaaeiiaiabg2da9iaabccacaqG4aGa ae4naaqaamaabmaabaGaaeyzaaGaayjkaiaawMcaaiaabccadaadaa qaamaaL4babaGaeyOeI0IaaGioaiaaiEdaaaaaaiaabccacqGH3daU caqGGaGaaeymaiaabccacqGH9aqpcaqGGaGaeyOeI0IaaeioaiaabE daaeaadaqadaqaaiaabAgaaiaawIcacaGLPaaacaqGGaWaaWaaaeaa daqjEaqaaiabgkHiTiaaisdacaaI4aaaaaaacaqGGaGaey49aGRaae iiaiaabsdacaqG4aGaaeiiaiabg2da9iaabccacqGHsislcaqGXaaa baGaaiiOamaabmaabaGaae4zaaGaayjkaiaawMcaaiaabccacaqGYa GaaGimaiaabccacqGH3daUcaqGGaWaaWaaaeaadaadaaqaamaaL4ba baGaeyOeI0IaaGymaiaaicdaaaaaaaaacaqGGaGaeyypa0Jaaeiiai abgkHiTiaabkdaaeaadaqadaqaaiaabIgaaiaawIcacaGLPaaacaqG GaWaaWaaaeaadaqjEaqaaiabgkHiTiaaigdacaaIYaaaaaaacaqGGa Gaey49aGRaaeiiamaabmaabaGaaeinaaGaayjkaiaawMcaaiaabcca cqGH9aqpcaqGGaGaeyOeI0Iaae4maaaaaa@B867@


Write five pairs of integers a,b such that a÷b=3. Onesuch pair is 6,2because 6÷2=3.


Five pair of integers are: ( 3,1 ),( 3,1 ),( 9,3 ),( 9,3 )and( 12,4 ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGgbGaaeyAaiaabAhacaqGLbGaaeii aiaabchacaqGHbGaaeyAaiaabkhacaqGGaGaae4BaiaabAgacaqGGa GaaeyAaiaab6gacaqG0bGaaeyzaiaabEgacaqGLbGaaeOCaiaaboha caqGGaGaaeyyaiaabkhacaqGLbGaaeOoaaqaamaaL4babaWaaeWaae aacaaIZaGaaiilaiabgkHiTiaaigdaaiaawIcacaGLPaaacaGGSaGa aGjbVpaabmaabaGaeyOeI0IaaG4maiaacYcacaaIXaaacaGLOaGaay zkaaGaaiilaiaaysW7daqadaqaaiaaiMdacaGGSaGaeyOeI0IaaG4m aaGaayjkaiaawMcaaiaacYcacaaMe8+aaeWaaeaacqGHsislcaaI5a GaaiilaiaaiodaaiaawIcacaGLPaaacaaMe8Uaaeyyaiaab6gacaqG KbGaaGjbVpaabmaabaGaaGymaiaaikdacaGGSaGaeyOeI0IaaGinaa GaayjkaiaawMcaaaaaaaaa@78A9@


The temperature at 12 noon was 10°C above zero. If itdecreases at the rate of 2°C per hour until midnight, atwhat time would the temperature be 8°C below zero?What would be the temperature at mid-night?


Initial temprature =10°C Change in temprature per hour=2°C Temprature at 1:00 PM=10°C+( 2°C )=8°C Temprature at 2:00 PM=8°C+( 2°C )=6°C Temprature at 3:00 PM=6°C+( 2°C )=4°C Temprature at 4:00 PM=4°C+( 2°C )=2°C Temprature at 5:00 PM=2°C+( 2°C )=0°C Temprature at 6:00 PM=0°C+( 2°C )=2°C Temprature at 7:00 PM=2°C+( 2°C )=4°C Temprature at 8:00 PM=4°C+( 2°C )=6°C Temprature at 9:00 PM=6°C+( 2°C )=8°C Thus, the temprature will be 8°C below zero at 9:00PM It will take 12 hours to be midnight (i.e. 12:00 AM) after 12:00 noon. Change in temprature in 12 hours = 2°C×12=24°C At midnight the temprature would be =10+( 24 )=14°C Thus, the temprature at midnight will be 14°Cbelow0 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGjbGaaeOBaiaabMgacaqG0bGaaeyA aiaabggacaqGSbGaaeiiaiaabshacaqGLbGaaeyBaiaabchacaqGYb GaaeyyaiaabshacaqG1bGaaeOCaiaabwgacaqGGaGaeyypa0JaaGym aiaaicdacqGHWcaScaWGdbaabaGaae4qaiaabIgacaqGHbGaaeOBai aabEgacaqGLbGaaeiiaiaabMgacaqGUbGaaeiiaiaabshacaqGLbGa aeyBaiaabchacaqGYbGaaeyyaiaabshacaqG1bGaaeOCaiaabwgaca qGGaGaaeiCaiaabwgacaqGYbGaaeiiaiaabIgacaqGVbGaaeyDaiaa bkhacqGH9aqpcqGHsislcaaIYaGaeyiSaaRaam4qaaqaaiaabsfaca qGLbGaaeyBaiaabchacaqGYbGaaeyyaiaabshacaqG1bGaaeOCaiaa bwgacaqGGaGaaeyyaiaabshacaqGGaGaaeymaiaabQdacaqGWaGaae imaiaabccacaqGqbGaaeytaiaab2dacaqGXaGaaeimaiabgclaWkaa doeacqGHRaWkdaqadaqaaiabgkHiTiaaikdacqGHWcaScaWGdbaaca GLOaGaayzkaaGaeyypa0JaaGioaiabgclaWkaadoeaaeaacaqGubGa aeyzaiaab2gacaqGWbGaaeOCaiaabggacaqG0bGaaeyDaiaabkhaca qGLbGaaeiiaiaabggacaqG0bGaaeiiaiaabkdacaqG6aGaaeimaiaa bcdacaqGGaGaaeiuaiaab2eacaqG9aGaaeioaiabgclaWkaadoeacq GHRaWkdaqadaqaaiabgkHiTiaaikdacqGHWcaScaWGdbaacaGLOaGa ayzkaaGaeyypa0JaaGOnaiabgclaWkaadoeaaeaacaqGubGaaeyzai aab2gacaqGWbGaaeOCaiaabggacaqG0bGaaeyDaiaabkhacaqGLbGa aeiiaiaabggacaqG0bGaaeiiaiaabodacaqG6aGaaeimaiaabcdaca qGGaGaaeiuaiaab2eacaqG9aGaaeOnaiabgclaWkaadoeacqGHRaWk daqadaqaaiabgkHiTiaaikdacqGHWcaScaWGdbaacaGLOaGaayzkaa Gaeyypa0JaaGinaiabgclaWkaadoeaaeaacaqGubGaaeyzaiaab2ga caqGWbGaaeOCaiaabggacaqG0bGaaeyDaiaabkhacaqGLbGaaeiiai aabggacaqG0bGaaeiiaiaabsdacaqG6aGaaeimaiaabcdacaqGGaGa aeiuaiaab2eacqGH9aqpcaaI0aGaeyiSaaRaam4qaiabgUcaRmaabm aabaGaeyOeI0IaaGOmaiabgclaWkaadoeaaiaawIcacaGLPaaacqGH 9aqpcaaIYaGaeyiSaaRaam4qaaqaaiaabsfacaqGLbGaaeyBaiaabc hacaqGYbGaaeyyaiaabshacaqG1bGaaeOCaiaabwgacaqGGaGaaeyy aiaabshacaqGGaGaaeynaiaabQdacaqGWaGaaeimaiaabccacaqGqb Gaaeytaiabg2da9iaaikdacqGHWcaScaWGdbGaey4kaSYaaeWaaeaa cqGHsislcaaIYaGaeyiSaaRaam4qaaGaayjkaiaawMcaaiabg2da9i aaicdacqGHWcaScaWGdbaabaGaaeivaiaabwgacaqGTbGaaeiCaiaa bkhacaqGHbGaaeiDaiaabwhacaqGYbGaaeyzaiaabccacaqGHbGaae iDaiaabccacaqG2aGaaeOoaiaabcdacaqGWaGaaeiiaiaabcfacaqG nbGaeyypa0JaaGimaiabgclaWkaadoeacqGHRaWkdaqadaqaaiabgk HiTiaaikdacqGHWcaScaWGdbaacaGLOaGaayzkaaGaeyypa0JaeyOe I0IaaGOmaiabgclaWkaadoeaaeaacaqGubGaaeyzaiaab2gacaqGWb GaaeOCaiaabggacaqG0bGaaeyDaiaabkhacaqGLbGaaeiiaiaabgga caqG0bGaaeiiaiaabEdacaqG6aGaaeimaiaabcdacaqGGaGaaeiuai aab2eacqGH9aqpcqGHsislcaaIYaGaeyiSaaRaam4qaiabgUcaRmaa bmaabaGaeyOeI0IaaGOmaiabgclaWkaadoeaaiaawIcacaGLPaaacq GH9aqpcqGHsislcaaI0aGaeyiSaaRaam4qaaqaaiaabsfacaqGLbGa aeyBaiaabchacaqGYbGaaeyyaiaabshacaqG1bGaaeOCaiaabwgaca qGGaGaaeyyaiaabshacaqGGaGaaeioaiaabQdacaqGWaGaaeimaiaa bccacaqGqbGaaeytaiabg2da9iabgkHiTiaaisdacqGHWcaScaWGdb Gaey4kaSYaaeWaaeaacqGHsislcaaIYaGaeyiSaaRaam4qaaGaayjk aiaawMcaaiabg2da9iabgkHiTiaaiAdacqGHWcaScaWGdbaabaGaae ivaiaabwgacaqGTbGaaeiCaiaabkhacaqGHbGaaeiDaiaabwhacaqG YbGaaeyzaiaabccacaqGHbGaaeiDaiaabccacaqG5aGaaeOoaiaabc dacaqGWaGaaeiiaiaabcfacaqGnbGaeyypa0JaeyOeI0IaaGOnaiab gclaWkaadoeacqGHRaWkdaqadaqaaiabgkHiTiaaikdacqGHWcaSca WGdbaacaGLOaGaayzkaaGaeyypa0JaeyOeI0IaaGioaiabgclaWkaa doeaaeaacaqGubGaaeiAaiaabwhacaqGZbGaaeilaiaabccacaqG0b GaaeiAaiaabwgacaqGGaGaaeiDaiaabwgacaqGTbGaaeiCaiaabkha caqGHbGaaeiDaiaabwhacaqGYbGaaeyzaiaabccacaqG3bGaaeyAai aabYgacaqGSbGaaeiiaiaabkgacaqGLbGaaeiiaiaaiIdacqGHWcaS caWGdbGaaeiiaiaabkgacaqGLbGaaeiBaiaab+gacaqG3bGaaeiiai aabQhacaqGLbGaaeOCaiaab+gacaqGGaGaaeyyaiaabshacaqGGaGa aeyoaiaabQdacaqGWaGaaeimaiaabcfacaqGnbaabaGaaeysaiaabs hacaqGGaGaae4DaiaabMgacaqGSbGaaeiBaiaabccacaqG0bGaaeyy aiaabUgacaqGLbGaaeiiaiaabgdacaqGYaGaaeiiaiaabIgacaqGVb GaaeyDaiaabkhacaqGZbGaaeiiaiaabshacaqGVbGaaeiiaiaabkga caqGLbGaaeiiaiaab2gacaqGPbGaaeizaiaab6gacaqGPbGaae4zai aabIgacaqG0bGaaeiiaiaabIcacaqGPbGaaeOlaiaabwgacaqGUaGa aeiiaiaabgdacaqGYaGaaeOoaiaabcdacaqGWaGaaeiiaiaabgeaca qGnbGaaeykaiaabccacaqGHbGaaeOzaiaabshacaqGLbGaaeOCaiaa bccacaqGXaGaaeOmaiaabQdacaqGWaGaaeimaaqaaiaab6gacaqGVb Gaae4Baiaab6gacaqGUaaabaGaae4qaiaabIgacaqGHbGaaeOBaiaa bEgacaqGLbGaaeiiaiaabMgacaqGUbGaaeiiaiaabshacaqGLbGaae yBaiaabchacaqGYbGaaeyyaiaabshacaqG1bGaaeOCaiaabwgacaqG GaGaaeyAaiaab6gacaqGGaGaaeymaiaabkdacaqGGaGaaeiAaiaab+ gacaqG1bGaaeOCaiaabohacaqGGaGaeyypa0JaaeiiaiabgkHiTiaa bkdacqGHWcaScaWGdbGaey41aqRaaGymaiaaikdacqGH9aqpcqGHsi slcaaIYaGaaGinaiabgclaWkaadoeaaeaacaqGbbGaaeiDaiaabcca caqGTbGaaeyAaiaabsgacaqGUbGaaeyAaiaabEgacaqGObGaaeiDai aabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeiDaiaabwgacaqGTbGa aeiCaiaabkhacaqGHbGaaeiDaiaabwhacaqGYbGaaeyzaiaabccaca qG3bGaae4BaiaabwhacaqGSbGaaeizaiaabccacaqGIbGaaeyzaiaa bccacqGH9aqpcaqGXaGaaeimaiaabUcadaqadaqaaiabgkHiTiaaik dacaaI0aaacaGLOaGaayzkaaGaeyypa0JaeyOeI0IaaGymaiaaisda cqGHWcaScaWGdbaabaGaaeivaiaabIgacaqG1bGaae4CaiaabYcaca qGGaWaauIhaeaacaqG0bGaaeiAaiaabwgacaqGGaGaaeiDaiaabwga caqGTbGaaeiCaiaabkhacaqGHbGaaeiDaiaabwhacaqGYbGaaeyzai aabccacaqGHbGaaeiDaiaabccacaqGTbGaaeyAaiaabsgacaqGUbGa aeyAaiaabEgacaqGObGaaeiDaiaabccacaqG3bGaaeyAaiaabYgaca qGSbGaaeiiaiaabkgacaqGLbGaaeiiaiaabgdacaqG0aGaeyiSaaRa am4qaiaaysW7caqGIbGaaeyzaiaabYgacaqGVbGaae4DaiaaysW7ca aIWaaaaiaac6caaaaa@9550@


In a class test + 3 marks are given for every correctanswer and -2 marks are given for every incorrectanswer and no marks for not attempting any question. i Radhika scored 20 marks. If she has got 12 correctanswers, how many questions has she attemptedincorrectly? ii Mohini scores -5 marks in this test, though she hasgot 7 correct answers. How many questions has sheattempted incorrectly? iii Rakesh scores 18 marks by attempting 16 questions.How many questions has he attemptedcorrectly and howmany has he attempted incorrectly?


Marks obtained for 1 right answer=+3 Marks obtained for 1 wrong answer=2 (i) Marks obtained by Radhika=20 Marks obtained for 12 correct answers=12×3=36 Marks obtained for incorrect answer=Total score-Marks obtained for 12 correct answers =20-36=–16 Marks obtained for 1 wrong answer=-2 Thus, number of incorrect answer=( 16 )÷( 2 )= 8 Thus, Radhika attempted 8 questions wrongly. (ii) Marks scored by Mohini=-5 Marks obtained for incorrect answers =Total answer-Marks obtained for 12 incorrect answer =521=26 Marks obtained for 1 wrong answer=-2 Thus, number of incorrect answer=( 26 )÷( 2 )= 13 Therefore, Mohini attempted 13 questions wrongly. (iii) Total marks scored by Rakesh =18 Number of questions attempted =16 ( Number of correct answers )( 3 ) +( Number of incorrect answers )( 2 )=18 ( Number of correct answers )( 5 )+( 32 )=18 ( Number of correct answers )= 50 5 =10 So,( Number of incorrect answers )=1610=6 Thus, Total number of correct and incorrect answers scored by Rakesh is 10 and 6 respectively. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGnbGaaeyyaiaabkhacaqGRbGaae4C aiaabccacaqGVbGaaeOyaiaabshacaqGHbGaaeyAaiaab6gacaqGLb GaaeizaiaabccacaqGMbGaae4BaiaabkhacaqGGaGaaeymaiaabcca caqGYbGaaeyAaiaabEgacaqGObGaaeiDaiaabccacaqGHbGaaeOBai aabohacaqG3bGaaeyzaiaabkhacqGH9aqpcqGHRaWkcaaIZaaabaGa aeytaiaabggacaqGYbGaae4AaiaabohacaqGGaGaae4Baiaabkgaca qG0bGaaeyyaiaabMgacaqGUbGaaeyzaiaabsgacaqGGaGaaeOzaiaa b+gacaqGYbGaaeiiaiaabgdacaqGGaGaae4DaiaabkhacaqGVbGaae OBaiaabEgacaqGGaGaaeyyaiaab6gacaqGZbGaae4DaiaabwgacaqG YbGaeyypa0JaeyOeI0IaaGOmaaqaaiaacIcacaWGPbGaaiykaaqaai aab2eacaqGHbGaaeOCaiaabUgacaqGZbGaaeiiaiaab+gacaqGIbGa aeiDaiaabggacaqGPbGaaeOBaiaabwgacaqGKbGaaeiiaiaabkgaca qG5bGaaeiiaiaabkfacaqGHbGaaeizaiaabIgacaqGPbGaae4Aaiaa bggacaqG9aGaaeOmaiaabcdaaeaacaqGnbGaaeyyaiaabkhacaqGRb Gaae4CaiaabccacaqGVbGaaeOyaiaabshacaqGHbGaaeyAaiaab6ga caqGLbGaaeizaiaabccacaqGMbGaae4BaiaabkhacaqGGaGaaeymai aabkdacaqGGaGaae4yaiaab+gacaqGYbGaaeOCaiaabwgacaqGJbGa aeiDaiaabccacaqGHbGaaeOBaiaabohacaqG3bGaaeyzaiaabkhaca qGZbGaaeypaiaabgdacaqGYaGaey41aqRaae4maiaab2dacaqGZaGa aeOnaaqaaiaab2eacaqGHbGaaeOCaiaabUgacaqGZbGaaeiiaiaab+ gacaqGIbGaaeiDaiaabggacaqGPbGaaeOBaiaabwgacaqGKbGaaeii aiaabAgacaqGVbGaaeOCaiaabccacaqGPbGaaeOBaiaabogacaqGVb GaaeOCaiaabkhacaqGLbGaae4yaiaabshacaqGGaGaaeyyaiaab6ga caqGZbGaae4DaiaabwgacaqGYbGaaeypaiaabsfacaqGVbGaaeiDai aabggacaqGSbGaaeiiaiaabohacaqGJbGaae4BaiaabkhacaqGLbGa aeylaiaab2eacaqGHbGaaeOCaiaabUgacaqGZbaabaGaae4Baiaabk gacaqG0bGaaeyyaiaabMgacaqGUbGaaeyzaiaabsgacaqGGaGaaeOz aiaab+gacaqGYbGaaeiiaiaabgdacaqGYaGaaeiiaiaabogacaqGVb GaaeOCaiaabkhacaqGLbGaae4yaiaabshacaqGGaGaaeyyaiaab6ga caqGZbGaae4DaiaabwgacaqGYbGaae4Caaqaaiaab2dacaqGYaGaae imaiaab2cacaqGZaGaaeOnaiaab2dacaqGTaGaaeylaiaabgdacaqG 2aaabaGaaeytaiaabggacaqGYbGaae4AaiaabohacaqGGaGaae4Bai aabkgacaqG0bGaaeyyaiaabMgacaqGUbGaaeyzaiaabsgacaqGGaGa aeOzaiaab+gacaqGYbGaaeiiaiaabgdacaqGGaGaae4Daiaabkhaca qGVbGaaeOBaiaabEgacaqGGaGaaeyyaiaab6gacaqGZbGaae4Daiaa bwgacaqGYbGaaeypaiaab2cacaqGYaaabaGaaeivaiaabIgacaqG1b Gaae4CaiaabYcacaqGGaGaaeOBaiaabwhacaqGTbGaaeOyaiaabwga caqGYbGaaeiiaiaab+gacaqGMbGaaeiiaiaabMgacaqGUbGaae4yai aab+gacaqGYbGaaeOCaiaabwgacaqGJbGaaeiDaiaabccacaqGHbGa aeOBaiaabohacaqG3bGaaeyzaiaabkhacaqG9aWaaeWaaeaacqGHsi slcaaIXaGaaGOnaaGaayjkaiaawMcaaiabgEpa4oaabmaabaGaeyOe I0IaaGOmaaGaayjkaiaawMcaaiabg2da9maaL4babaGaaGioaaaaae aacaqGubGaaeiAaiaabwhacaqGZbGaaeilaiaabccacaqGsbGaaeyy aiaabsgacaqGObGaaeyAaiaabUgacaqGHbGaaeiiaiaabggacaqG0b GaaeiDaiaabwgacaqGTbGaaeiCaiaabshacaqGLbGaaeizaiaabcca caqG4aGaaeiiaiaabghacaqG1bGaaeyzaiaabohacaqG0bGaaeyAai aab+gacaqGUbGaae4CaiaabccacaqG3bGaaeOCaiaab+gacaqGUbGa ae4zaiaabYgacaqG5bGaaeOlaaqaaiaabIcacaqGPbGaaeyAaiaabM caaeaacaqGnbGaaeyyaiaabkhacaqGRbGaae4CaiaabccacaqGZbGa ae4yaiaab+gacaqGYbGaaeyzaiaabsgacaqGGaGaaeOyaiaabMhaca qGGaGaaeytaiaab+gacaqGObGaaeyAaiaab6gacaqGPbGaaeypaiaa b2cacaqG1aaabaGaaeytaiaabggacaqGYbGaae4AaiaabohacaqGGa Gaae4BaiaabkgacaqG0bGaaeyyaiaabMgacaqGUbGaaeyzaiaabsga caqGGaGaaeOzaiaab+gacaqGYbGaaeiiaiaabMgacaqGUbGaae4yai aab+gacaqGYbGaaeOCaiaabwgacaqGJbGaaeiDaiaabccacaqGHbGa aeOBaiaabohacaqG3bGaaeyzaiaabkhacaqGZbaabaGaaeypaiaabs facaqGVbGaaeiDaiaabggacaqGSbGaaeiiaiaabggacaqGUbGaae4C aiaabEhacaqGLbGaaeOCaiaab2cacaqGnbGaaeyyaiaabkhacaqGRb Gaae4CaiaabccacaqGVbGaaeOyaiaabshacaqGHbGaaeyAaiaab6ga caqGLbGaaeizaiaabccacaqGMbGaae4BaiaabkhacaqGGaGaaeymai aabkdacaqGGaGaaeyAaiaab6gacaqGJbGaae4BaiaabkhacaqGYbGa aeyzaiaabogacaqG0bGaaeiiaiaabggacaqGUbGaae4CaiaabEhaca qGLbGaaeOCaaqaaiabg2da9iabgkHiTiaaiwdacqGHsislcaaIYaGa aGymaiabg2da9iabgkHiTiaaikdacaaI2aaabaGaaeytaiaabggaca qGYbGaae4AaiaabohacaqGGaGaae4BaiaabkgacaqG0bGaaeyyaiaa bMgacaqGUbGaaeyzaiaabsgacaqGGaGaaeOzaiaab+gacaqGYbGaae iiaiaabgdacaqGGaGaae4DaiaabkhacaqGVbGaaeOBaiaabEgacaqG GaGaaeyyaiaab6gacaqGZbGaae4DaiaabwgacaqGYbGaaeypaiaab2 cacaqGYaaabaGaaeivaiaabIgacaqG1bGaae4CaiaabYcacaqGGaGa aeOBaiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaeiiaiaab+gaca qGMbGaaeiiaiaabMgacaqGUbGaae4yaiaab+gacaqGYbGaaeOCaiaa bwgacaqGJbGaaeiDaiaabccacaqGHbGaaeOBaiaabohacaqG3bGaae yzaiaabkhacaqG9aWaaeWaaeaacqGHsislcaaIYaGaaGOnaaGaayjk aiaawMcaaiabgEpa4oaabmaabaGaeyOeI0IaaGOmaaGaayjkaiaawM caaiabg2da9maaL4babaGaaGymaiaaiodaaaaabaGaaeivaiaabIga caqGLbGaaeOCaiaabwgacaqGMbGaae4BaiaabkhacaqGLbGaaeilai aabccacaqGnbGaae4BaiaabIgacaqGPbGaaeOBaiaabMgacaqGGaGa aeyyaiaabshacaqG0bGaaeyzaiaab2gacaqGWbGaaeiDaiaabwgaca qGKbGaaeiiaiaabgdacaqGZaGaaeiiaiaabghacaqG1bGaaeyzaiaa bohacaqG0bGaaeyAaiaab+gacaqGUbGaae4CaiaabccacaqG3bGaae OCaiaab+gacaqGUbGaae4zaiaabYgacaqG5bGaaeOlaaqaaiaabIca caqGPbGaaeyAaiaabMgacaqGPaaabaGaaeivaiaab+gacaqG0bGaae yyaiaabYgacaqGGaGaaeyBaiaabggacaqGYbGaae4AaiaabohacaqG GaGaae4CaiaabogacaqGVbGaaeOCaiaabwgacaqGKbGaaeiiaiaabk gacaqG5bGaaeiiaiaabkfacaqGHbGaae4AaiaabwgacaqGZbGaaeiA aiaabccacaqG9aGaaeymaiaabIdaaeaacaqGobGaaeyDaiaab2gaca qGIbGaaeyzaiaabkhacaqGGaGaae4BaiaabAgacaqGGaGaaeyCaiaa bwhacaqGLbGaae4CaiaabshacaqGPbGaae4Baiaab6gacaqGZbGaae iiaiaabggacaqG0bGaaeiDaiaabwgacaqGTbGaaeiCaiaabshacaqG LbGaaeizaiaabccacaqG9aGaaeymaiaabAdaaeaacaqGGaWaaeWaae aacaqGobGaaeyDaiaab2gacaqGIbGaaeyzaiaabkhacaqGGaGaae4B aiaabAgacaqGGaGaae4yaiaab+gacaqGYbGaaeOCaiaabwgacaqGJb GaaeiDaiaabccacaqGHbGaaeOBaiaabohacaqG3bGaaeyzaiaabkha caqGZbaacaGLOaGaayzkaaWaaeWaaeaacaaIZaaacaGLOaGaayzkaa aabaGaey4kaSYaaeWaaeaacaqGobGaaeyDaiaab2gacaqGIbGaaeyz aiaabkhacaqGGaGaae4BaiaabAgacaqGGaGaaeyAaiaab6gacaqGJb Gaae4BaiaabkhacaqGYbGaaeyzaiaabogacaqG0bGaaeiiaiaabgga caqGUbGaae4CaiaabEhacaqGLbGaaeOCaiaabohaaiaawIcacaGLPa aadaqadaqaaiabgkHiTiaaikdaaiaawIcacaGLPaaacqGH9aqpcaaI XaGaaGioaaqaaiabgkDiEpaabmaabaGaaeOtaiaabwhacaqGTbGaae OyaiaabwgacaqGYbGaaeiiaiaab+gacaqGMbGaaeiiaiaabogacaqG VbGaaeOCaiaabkhacaqGLbGaae4yaiaabshacaqGGaGaaeyyaiaab6 gacaqGZbGaae4DaiaabwgacaqGYbGaae4CaaGaayjkaiaawMcaamaa bmaabaGaaGynaaGaayjkaiaawMcaaiabgUcaRmaabmaabaGaeyOeI0 IaaG4maiaaikdaaiaawIcacaGLPaaacqGH9aqpcaaIXaGaaGioaaqa aiabgkDiEpaabmaabaGaaeOtaiaabwhacaqGTbGaaeOyaiaabwgaca qGYbGaaeiiaiaab+gacaqGMbGaaeiiaiaabogacaqGVbGaaeOCaiaa bkhacaqGLbGaae4yaiaabshacaqGGaGaaeyyaiaab6gacaqGZbGaae 4DaiaabwgacaqGYbGaae4CaaGaayjkaiaawMcaaiabg2da9maalaaa baGaaGynaiaaicdaaeaacaaI1aaaaiabg2da9iaaigdacaaIWaaaba Gaam4uaiaad+gacaGGSaWaaeWaaeaacaqGobGaaeyDaiaab2gacaqG IbGaaeyzaiaabkhacaqGGaGaae4BaiaabAgacaqGGaGaaeyAaiaab6 gacaqGJbGaae4BaiaabkhacaqGYbGaaeyzaiaabogacaqG0bGaaeii aiaabggacaqGUbGaae4CaiaabEhacaqGLbGaaeOCaiaabohaaiaawI cacaGLPaaacqGH9aqpcaaIXaGaaGOnaiabgkHiTiaaigdacaaIWaGa eyypa0JaaGOnaaqaaiaabsfacaqGObGaaeyDaiaabohacaqGSaGaae iiaiaabsfacaqGVbGaaeiDaiaabggacaqGSbGaaeiiaiaab6gacaqG 1bGaaeyBaiaabkgacaqGLbGaaeOCaiaabccacaqGVbGaaeOzaiaabc cacaqGJbGaae4BaiaabkhacaqGYbGaaeyzaiaabogacaqG0bGaaeii aiaabggacaqGUbGaaeizaiaabccacaqGPbGaaeOBaiaabogacaqGVb GaaeOCaiaabkhacaqGLbGaae4yaiaabshacaqGGaGaaeyyaiaab6ga caqGZbGaae4DaiaabwgacaqGYbGaae4CaiaabccacaqGZbGaae4yai aab+gacaqGYbGaaeyzaiaabsgaaeaacaqGIbGaaeyEaiaabccacaqG sbGaaeyyaiaabUgacaqGLbGaae4CaiaabIgacaqGGaGaaeyAaiaabo hacaqGGaGaaeymaiaabcdacaqGGaGaaeyyaiaab6gacaqGKbGaaeii aiaabAdacaqGGaGaaeOCaiaabwgacaqGZbGaaeiCaiaabwgacaqGJb GaaeiDaiaabMgacaqG2bGaaeyzaiaabYgacaqG5bGaaeOlaaaaaa@91EF@


An elevator descends into a mine shaft at the rate of 6 m/min. If the descent starts  from 10 m above the ground level, how long will it take to reach – 350m.


Distance descended is denoted by a negative integer. Initial height=+10 m Final depth =350 m Total distance to be descended by the elevator= ( 350 )( +10 )=360m Timetaken by the elevator to be descend 6 m = 1 min Thus, time taken by the elevator to descend 360 m = ( 360 )÷( 6 )= 60minutes=1hour MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGebGaaeyAaiaabohacaqG0bGaaeyy aiaab6gacaqGJbGaaeyzaiaabccacaqGKbGaaeyzaiaabohacaqGJb Gaaeyzaiaab6gacaqGKbGaaeyzaiaabsgacaqGGaGaaeyAaiaaboha caqGGaGaaeizaiaabwgacaqGUbGaae4BaiaabshacaqGLbGaaeizai aabccacaqGIbGaaeyEaiaabccacaqGHbGaaeiiaiaab6gacaqGLbGa ae4zaiaabggacaqG0bGaaeyAaiaabAhacaqGLbGaaeiiaiaabMgaca qGUbGaaeiDaiaabwgacaqGNbGaaeyzaiaabkhacaqGUaaabaGaaeys aiaab6gacaqGPbGaaeiDaiaabMgacaqGHbGaaeiBaiaabccacaqGOb GaaeyzaiaabMgacaqGNbGaaeiAaiaabshacqGH9aqpcqGHRaWkcaaI XaGaaGimaiaabccacaqGTbaabaGaaeOraiaabMgacaqGUbGaaeyyai aabYgacaqGGaGaaeizaiaabwgacaqGWbGaaeiDaiaabIgacaqGGaGa eyypa0JaeyOeI0IaaG4maiaaiwdacaaIWaGaaeiiaiaab2gaaeaaca qGubGaae4BaiaabshacaqGHbGaaeiBaiaabccacaqGKbGaaeyAaiaa bohacaqG0bGaaeyyaiaab6gacaqGJbGaaeyzaiaabccacaqG0bGaae 4BaiaabccacaqGIbGaaeyzaiaabccacaqGKbGaaeyzaiaabohacaqG JbGaaeyzaiaab6gacaqGKbGaaeyzaiaabsgacaqGGaGaaeOyaiaabM hacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabwgacaqGSbGaaeyz aiaabAhacaqGHbGaaeiDaiaab+gacaqGYbGaeyypa0Jaaeiiamaabm aabaGaeyOeI0IaaG4maiaaiwdacaaIWaaacaGLOaGaayzkaaGaeyOe I0YaaeWaaeaacqGHRaWkcaaIXaGaaGimaaGaayjkaiaawMcaaiabg2 da9iabgkHiTiaaiodacaaI2aGaaGimaiaaysW7caqGTbaabaGaaeiv aiaabMgacaqGTbGaaeyzaiaaysW7caqG0bGaaeyyaiaabUgacaqGLb GaaeOBaiaabccacaqGIbGaaeyEaiaabccacaqG0bGaaeiAaiaabwga caqGGaGaaeyzaiaabYgacaqGLbGaaeODaiaabggacaqG0bGaae4Bai aabkhacaqGGaGaaeiDaiaab+gacaqGGaGaaeOyaiaabwgacaqGGaGa aeizaiaabwgacaqGZbGaae4yaiaabwgacaqGUbGaaeizaiaabccacq GHsislcaqG2aGaaeiiaiaab2gacaqGGaGaeyypa0Jaaeiiaiaabgda caqGGaGaaeyBaiaabMgacaqGUbaabaGaaeivaiaabIgacaqG1bGaae 4CaiaabYcacaqGGaGaaeiDaiaabMgacaqGTbGaaeyzaiaabccacaqG 0bGaaeyyaiaabUgacaqGLbGaaeOBaiaabccacaqGIbGaaeyEaiaabc cacaqG0bGaaeiAaiaabwgacaqGGaGaaeyzaiaabYgacaqGLbGaaeOD aiaabggacaqG0bGaae4BaiaabkhacaqGGaGaaeiDaiaab+gacaqGGa GaaeizaiaabwgacaqGZbGaae4yaiaabwgacaqGUbGaaeizaiaabcca cqGHsislcaqGZaGaaeOnaiaabcdacaqGGaGaaeyBaiaabccacaqG9a GaaeiiamaabmaabaGaeyOeI0IaaG4maiaaiAdacaaIWaaacaGLOaGa ayzkaaGaey49aG7aaeWaaeaacqGHsislcaaI2aaacaGLOaGaayzkaa Gaeyypa0ZaauIhaeaacaaI2aGaaGimaiaaysW7caqGTbGaaeyAaiaa b6gacaqG1bGaaeiDaiaabwgacaqGZbGaaGjbVlabg2da9iaaigdaca aMe8UaaeiAaiaab+gacaqG1bGaaeOCaaaaaaaa@3FB3@

For viewing question paper please click here

FAQs (Frequently Asked Questions)

1. How many questions do the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 contain?

The NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 consists of seven questions in total. The NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 available on the Extramarks website contains the answers to the questions. It is one of India’s leading education portals. Mathematics experts developed these solutions and have years of experience in the relevant industry.


2. What are the benefits of using the solutions for Class 7 Maths Chapter 1 Exercise 1.4 available on the Extramarks website?

Extramarks is providing NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 online to help all students in their academic endeavours. Both online and offline, these solutions are easy to use. These excellent study resources are available to all students anytime and at their convenience. To make it simpler for students of any IQ level to understand, all NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 are presented step-by-step. Additionally, any student can use these NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 to evaluate their progress. Examining each response using the solutions PDF after independently resolving the questions from the Mathematics exercises. Extramarks solutions are written straightforwardly to make it simple for students to understand complex subjects.

3. What topics will be covered in the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4?

Students will learn about Integers in this chapter, a larger group of numbers made up of whole numbers and their negatives. If there are even numbers of negative Integers, the product is positive; if there are odd numbers, the product is negative.

4. Where can students find the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4?

On the Extramarks website and mobile application, students in Class 7 can access the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 in PDF format. The NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 have a straightforward format. Mathematics experts create the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4.


5. Is it possible to download the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 in PDF format?

Yes, students can download the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4 in PDF format and study them whenever they have free time. Students can cross-check their answers to questions in the NCERT Solutions For Class 7 Maths Chapter 1 Exercise 1.4.