NCERT Solutions for Class 9 Mathematics Chapter 12 – Heron’s Formula
Home » NCERT Solutions » NCERT Solutions for Class 9 Mathematics Chapter 12 – Heron’s Formula
-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
Mathematics requires a lot of practice. One can excel in Mathematics only if he practices as much numericals as he can. After understanding the concepts and developing the habit of practising, you will see yourself passing Mathematics exam with flying colours as it is rightly said; ‘Practice makes a man perfect.
Extramarks is a well-known learning platform trusted for providing high-quality study materials for Class 11 to Class 12. Our team of academic experts have created study materials based on the latest CBSE syllabus and guidelines. Students can confidently rely on our comprehensive study solutions.
The topics like introduction to triangles, area of equilateral triangles, area of isosceles triangles, and finding the area of any polygon using Heron’s formula are covered in Class 9 Chapter 12 Mathematics. Students are advised to complete the chapter triangles given in NCERT Class 9 Mathematics textbook and clear all the basics related to it.
You will find information related to the properties of equilateral and isosceles triangles, how to find their areas, who was a heron, what role he played in Mathematics and how to find the area of any polygon using Heron’s formula in NCERT Solutions for Class 9 Mathematics Chapter 12. You can also explore solutions for other classes such as NCERT Class 9 Mathematics Chapter 7 and NCERT Class 9 Mathematics Chapter 12 in our NCERT Solutions for Class 9 Mathematics Chapter 12.
Extramarks is always a step ahead in providing quality resources. You can find NCERT Exemplars , NCERT related study material, NCERT revision notes, NCERT practice questions, NCERT Solutions and a lot more on our Extramarks website.
Key Topics Covered In NCERT Solutions for Class 9 Mathematics Chapter 12
You can recall what a triangle is, its definitions, the theorems related to it and all its properties from NCERT Class 9 Mathematics Chapter 7. All the applications covered in that chapter will be of great use in this chapter too. Hence, students are advised to thoroughly revise it before beginning NCERT Solutions for Class 9 Mathematics Chapter 12.
You will learn more about the calculations of areas of triangles and other polygons in this chapter. One of the highlight topics of this chapter is Heron’s formula which helps in solving sums with a lot of ease and thereby bringing accuracy. You don’t have to jump from NCERT Mathematics Chapter 7 to NCERT Mathematics Chapter 12 again and again if you refer to Extramarks’ resources.
We have covered all the interrelated topics and sub-topics from both the chapters in the NCERT Solutions for Class 9 Mathematics Chapter 12 available on the Extramarks’ website.
NCERT Solutions Class 9 Mathematics Chapter 12 requires students to use their critical thinking ability and students apply a wide range of formulas they have learnt.
Introduction
In the earlier chapters of Class 9 Mathematics, we have already learnt about the different shapes like triangles, parallelograms, rhombus, rectangles etc.
We have also read about how to calculate the areas of these shapes.
We will learn more about the calculation of areas of the different types of triangles like Equilateral triangles, isosceles triangles, and right-angle triangles.
- Equilateral triangles: In this triangle, all sides are equal in length.
-
- Isosceles triangles: This triangle has two equal sides and two equal angles.
- Right-angle triangles: This triangle has one angle of 90 degrees.
You will also get to know how to calculate the area of a polygon using Heron’s formula.
Area of a triangle – by Heron’s formula
Heron was a well-known mathematician from Egypt. Due to his varied contributions to Mathematics, he was also considered as an encyclopaedia for major concepts of mathematics. He derived the famous formula for the area of a triangle in terms of its three sides. This formula was named in his honour as Heron’s formula.
Heron’s formula is:
Area of triangle =√s(s-a)(s-b)(s-c),
where s = Perimeter/2 = (a + b + c)/2
This formula is helpful when it is not possible to find the height of the triangle easily.
To learn more about the Heron’s formula and practice a lot of questions related to the area of the triangle. You can visit the website of Extramarks and explore our study material and refer to NCERT Solutions for Class 9 Mathematics Chapter 12.
Application of Heron’s formula in finding the area of quadrilateral
In this section, we will get to know about how to calculate the area of a quadrilateral by splitting it into triangles.
By doing so, you can quickly calculate the area with a lot of accuracy.
You can find the steps to calculate the area of the quadrilateral in the NCERT Solutions for Class 9 Mathematics Chapter 12 available on the Extramarks’ website.
Summary
In this chapter, we have learnt about
- Different types of triangles
- Calculation of the area of equilateral triangles
- Calculation of the area of the isosceles triangles
- Calculation of the area of the right angle triangles
- Calculation of the area of the polygons by Heron’s formula
- Calculate the area of quadrilaterals by splitting them into triangles
NCERT Solutions for Class 9 Mathematics Chapter 12 Exercise & Solutions
Extramarks believes that chapter exercises play a key role in students’ preparation. Students can ace their examinations if they solve every exercise given in the NCERT textbook properly and completely. Hence, Extramarks NCERT Solutions for Class 9 Mathematics Chapter 12 has all the chapter related exercises and solutions covered in a detailed manner. You can also find some extra questions to practice in our NCERT study material available on the Extramarks’ website.
You can find for exercise specific questions and solutions for NCERT Solutions for Class 9 Mathematics Chapter 12 by referring to the following links:
- Chapter 12: Exercise 12.1 Question and answers
- Chapter 12: Exercise 12.2 Question and answers
Along with NCERT Solutions for Class 9 Mathematics Chapter 12, students can explore NCERT Solutions on our Extramarks website for all primary and secondary classes.
- NCERT Solutions Class 1
- NCERT Solutions Class 2
- NCERT Solutions Class 3
- NCERT Solutions Class 4
- NCERT Solutions Class 5
- NCERT Solutions Class 6
- NCERT Solutions Class 7
- NCERT Solutions Class 8
- NCERT Solutions Class 9
- NCERT solutions Class 10
- NCERT solutions Class 11
- NCERT solutions Class 12
NCERT Exemplar for Class 9 Mathematics
NCERT Exemplar Class 9 Mathematics book helps students to develop interest in the subject. One can learn about the application of Mathematics in real life because of the well-formed questions in the book. The wide range of concepts covered in the book makes it beneficial for all the curriculum students.
It has a set of various questions required to be good performers in the subject of Mathematics. The different types and ranges of questions covered throughout the book will prove to be a milestone in every aspect of your study of Mathematics. As a result, students are advised by the experts to include these books in their study material.
Students can easily refer to a more advanced level of questions once they develop conceptual understanding using this book. This book is an encyclopaedia for NCERT related questions. Students develop more skills based thinking once they start studying from this book. Thus, NCERT Exemplar is the right resource for your preparation.
Key Features of NCERT Solutions for Class 9 Mathematics Chapter 12
An active mind always yields positive results. Hence, NCERT Solutions for Class 9 Mathematics Chapter 12 has been designed in such a way that keeps your mind active and engaged. You can find the following key features:
- NCERT Solutions for Class 9 Mathematics Chapter 12 has a wide range of questions that gives a good exercise to your brain; thus making you feel energetic
- The gradual increase in the difficulty of the questions keeps you motivated during your practice sessions.
- After completing the NCERT Solutions for Class 9 Mathematics Chapter 12, you can ensure you have practised questions from all the corners of the chapter, and thus, no concept remains untouched.
Q.1 A traffic signal board, indicating ‘SCHOOL AHEAD’, is an equilateral triangle with side ‘a’. Find the area of the signal board, using Heron’s formula. If its perimeter is 180 cm, what will be the area of the signal board?
Ans.
Q.2 The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 122 m, 22 m and 120 m (see following figure.). The advertisements yield an earning of ₹ 5000 per m2 per year. A company hired one of its walls for 3 months. How much rent did it pay?
Ans.
Q.3 There is a slide in a park. One of its side walls has been painted in some colour with a message “KEEP THE PARK GREEN AND CLEAN”.
If the sides of the wall are 15m, 11 m and 6 m, find the area painted in colour.
Ans.
Q.4 Find the area of a triangle two sides of which are 18cm and 10cm and the perimeter is 42cm.
Ans.
Q.5 Sides of a triangle are in the ratio of 12:17:25 and its perimeter is 540 cm. Find its area.
Ans.
Q.6 An isosceles triangle has perimeter 30 cm and each of the equal sides is 12 cm. Find the area of the triangle.
Ans.
Q.7 A park, in the shape of a quadrilateral ABCD, has ∠C = 90º, AB = 9 m, BC = 12 m, CD = 5 m and AD = 8 m. How much area does it occupy?
Ans.
Q.8 Find the area of a quadrilateral ABCD in which AB = 3 cm, BC = 4 cm, CD = 4 cm, DA = 5 cm and AC = 5 cm.
Ans.
Q.9 Radha made a picture of an aeroplane with coloured paper as shown in the following figure. Find the total area of the paper used.
Ans.
Q.10 A triangle and a parallelogram have the same base and the same area. If the sides of the triangle are 26 cm, 28 cm and 30 cm, and the parallelogram stands on the base 28 cm, find the height of the parallelogram.
Ans.
Q.11 A rhombus shaped field has green grass for 18 cows to graze. If each side of the rhombus is 30 m and its longer diagonal is 48 m, how much area of grass field will each cow be getting?
Ans.
Q.12 An umbrella is made by stitching 10 triangular pieces of cloth of two different colours (see Fig. 12.16), each piece measuring 20 cm, 50 cm and 50 cm. How much cloth of each colour is required for the umbrella?
Ans.
Q.13 A kite in the shape of a square with a diagonal 32 cm and an isosceles triangle of base 8 cm and sides 6 cm each is to be made of three different shades as shown in Figure. How much paper of each shade has been used in it?
Ans.
Q.14 A floral design on a floor is made up of 16 tiles which are triangular, the sides of the triangle being 9 cm, 28 cm and 35 cm.
Find the cost of polishing the tiles at the rate of 50p per cm2.
Ans.
Q.15 A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m. The non-parallel sides are 14 m and 13 m. Find the area of the field.
Ans.
Let ABCD be trapezium and parallel sides AB=10 m and CD = 25 m.
Non-parallel sides are AD = 13 m and BC = 14 m.
Let height of ABCD be BE. Draw BF parallel to AD.
So, BF = 13 cm because opposite sides of parallelogram are equal.
FC = 25 – DF
= 25 – 10 = 15 m
Please register to view this section
FAQs (Frequently Asked Questions)
1. How many exercises and solutions are included in NCERT Solutions for Class 9 Mathematics Chapter 12?
There are a total of 2 exercises and a total of 15 questions included in the NCERT Solutions for Class 9 Mathematics Chapter 12. You can find a detailed solution to each exercise and every question and test knowledge and step up your preparation.
You can avail of NCERT Solutions from the Extramarks website anytime to leverage your performance and excel in your examinations.
2. Why has NCERT Chapter 12 been included in the Class 9 Mathematics syllabus?
You have already been learning about the basics of triangles right from your lower classes. By now, you might have understood the importance of triangles in the Mathematics syllabus. As a result, NCERT Class 9 Mathematics textbook itself contains two chapters based on triangles.
It is necessary that students know all the applications of triangles and the role of Heron’s formula in calculating area in a stipulated time. The concepts covered in this chapter will largely be used in Class 11 and Class 12 Mathematics. Hence, this chapter carries a lot of importance and has been included in NCERT Class 9 Mathematics syllabus.