NCERT Solutions for Class 9 Mathematics Chapter 7- Triangles
Home » NCERT Solutions » NCERT Solutions for Class 9 Mathematics Chapter 7- Triangles
-
CBSE Important Questions›
-
CBSE Previous Year Question Papers›
- CBSE Previous Year Question Papers
- CBSE Previous Year Question Papers Class 12
- CBSE Previous Year Question Papers Class 10
-
CBSE Revision Notes›
-
CBSE Syllabus›
-
CBSE Extra Questions›
-
CBSE Sample Papers›
- CBSE Sample Papers
- CBSE Sample Question Papers For Class 5
- CBSE Sample Question Papers For Class 4
- CBSE Sample Question Papers For Class 3
- CBSE Sample Question Papers For Class 2
- CBSE Sample Question Papers For Class 1
- CBSE Sample Question Papers For Class 12
- CBSE Sample Question Papers For Class 11
- CBSE Sample Question Papers For Class 10
- CBSE Sample Question Papers For Class 9
- CBSE Sample Question Papers For Class 8
- CBSE Sample Question Papers For Class 7
- CBSE Sample Question Papers For Class 6
-
ISC & ICSE Syllabus›
-
ICSE Question Paper›
- ICSE Question Paper
- ISC Class 12 Question Paper
- ICSE Class 10 Question Paper
-
ICSE Sample Question Papers›
- ICSE Sample Question Papers
- ISC Sample Question Papers For Class 12
- ISC Sample Question Papers For Class 11
- ICSE Sample Question Papers For Class 10
- ICSE Sample Question Papers For Class 9
- ICSE Sample Question Papers For Class 8
- ICSE Sample Question Papers For Class 7
- ICSE Sample Question Papers For Class 6
-
ICSE Revision Notes›
- ICSE Revision Notes
- ICSE Class 9 Revision Notes
- ICSE Class 10 Revision Notes
-
ICSE Important Questions›
-
Maharashtra board›
-
Rajasthan-Board›
- Rajasthan-Board
-
Andhrapradesh Board›
- Andhrapradesh Board
- AP Board Sample Question Paper
- AP Board syllabus
- AP Board Previous Year Question Paper
-
Telangana Board›
-
Tamilnadu Board›
-
NCERT Solutions Class 12›
- NCERT Solutions Class 12
- NCERT Solutions Class 12 Economics
- NCERT Solutions Class 12 English
- NCERT Solutions Class 12 Hindi
- NCERT Solutions Class 12 Maths
- NCERT Solutions Class 12 Physics
- NCERT Solutions Class 12 Accountancy
- NCERT Solutions Class 12 Biology
- NCERT Solutions Class 12 Chemistry
- NCERT Solutions Class 12 Commerce
-
NCERT Solutions Class 10›
-
NCERT Solutions Class 11›
- NCERT Solutions Class 11
- NCERT Solutions Class 11 Statistics
- NCERT Solutions Class 11 Accountancy
- NCERT Solutions Class 11 Biology
- NCERT Solutions Class 11 Chemistry
- NCERT Solutions Class 11 Commerce
- NCERT Solutions Class 11 English
- NCERT Solutions Class 11 Hindi
- NCERT Solutions Class 11 Maths
- NCERT Solutions Class 11 Physics
-
NCERT Solutions Class 9›
-
NCERT Solutions Class 8›
-
NCERT Solutions Class 7›
-
NCERT Solutions Class 6›
-
NCERT Solutions Class 5›
- NCERT Solutions Class 5
- NCERT Solutions Class 5 EVS
- NCERT Solutions Class 5 English
- NCERT Solutions Class 5 Maths
-
NCERT Solutions Class 4›
-
NCERT Solutions Class 3›
-
NCERT Solutions Class 2›
- NCERT Solutions Class 2
- NCERT Solutions Class 2 Hindi
- NCERT Solutions Class 2 Maths
- NCERT Solutions Class 2 English
-
NCERT Solutions Class 1›
- NCERT Solutions Class 1
- NCERT Solutions Class 1 English
- NCERT Solutions Class 1 Hindi
- NCERT Solutions Class 1 Maths
-
JEE Main Question Papers›
-
JEE Main Syllabus›
- JEE Main Syllabus
- JEE Main Chemistry Syllabus
- JEE Main Maths Syllabus
- JEE Main Physics Syllabus
-
JEE Main Questions›
- JEE Main Questions
- JEE Main Maths Questions
- JEE Main Physics Questions
- JEE Main Chemistry Questions
-
JEE Main Mock Test›
- JEE Main Mock Test
-
JEE Main Revision Notes›
- JEE Main Revision Notes
-
JEE Main Sample Papers›
- JEE Main Sample Papers
-
JEE Advanced Question Papers›
-
JEE Advanced Syllabus›
- JEE Advanced Syllabus
-
JEE Advanced Mock Test›
- JEE Advanced Mock Test
-
JEE Advanced Questions›
- JEE Advanced Questions
- JEE Advanced Chemistry Questions
- JEE Advanced Maths Questions
- JEE Advanced Physics Questions
-
JEE Advanced Sample Papers›
- JEE Advanced Sample Papers
-
NEET Eligibility Criteria›
- NEET Eligibility Criteria
-
NEET Question Papers›
-
NEET Sample Papers›
- NEET Sample Papers
-
NEET Syllabus›
-
NEET Mock Test›
- NEET Mock Test
-
NCERT Books Class 9›
- NCERT Books Class 9
-
NCERT Books Class 8›
- NCERT Books Class 8
-
NCERT Books Class 7›
- NCERT Books Class 7
-
NCERT Books Class 6›
- NCERT Books Class 6
-
NCERT Books Class 5›
- NCERT Books Class 5
-
NCERT Books Class 4›
- NCERT Books Class 4
-
NCERT Books Class 3›
- NCERT Books Class 3
-
NCERT Books Class 2›
- NCERT Books Class 2
-
NCERT Books Class 1›
- NCERT Books Class 1
-
NCERT Books Class 12›
- NCERT Books Class 12
-
NCERT Books Class 11›
- NCERT Books Class 11
-
NCERT Books Class 10›
- NCERT Books Class 10
-
Chemistry Full Forms›
- Chemistry Full Forms
-
Biology Full Forms›
- Biology Full Forms
-
Physics Full Forms›
- Physics Full Forms
-
Educational Full Form›
- Educational Full Form
-
Examination Full Forms›
- Examination Full Forms
-
Algebra Formulas›
- Algebra Formulas
-
Chemistry Formulas›
- Chemistry Formulas
-
Geometry Formulas›
- Geometry Formulas
-
Math Formulas›
- Math Formulas
-
Physics Formulas›
- Physics Formulas
-
Trigonometry Formulas›
- Trigonometry Formulas
-
CUET Admit Card›
- CUET Admit Card
-
CUET Application Form›
- CUET Application Form
-
CUET Counselling›
- CUET Counselling
-
CUET Cutoff›
- CUET Cutoff
-
CUET Previous Year Question Papers›
- CUET Previous Year Question Papers
-
CUET Results›
- CUET Results
-
CUET Sample Papers›
- CUET Sample Papers
-
CUET Syllabus›
- CUET Syllabus
-
CUET Eligibility Criteria›
- CUET Eligibility Criteria
-
CUET Exam Centers›
- CUET Exam Centers
-
CUET Exam Dates›
- CUET Exam Dates
-
CUET Exam Pattern›
- CUET Exam Pattern
Mathematics is the study of numbers and their applications. It is mainly associated with accounting and various operations of Mathematics. It is broadly categorised into two sections; Algebra and Geometry. Hence, to master Mathematics, one should focus on both the sections in detail.
The main topics covered in the Chapter 7 of Class 9 Mathematics Triangles are congruent triangles, SSS, SAS, ASA and AAS criteria for congruence, why are SSA and AAA rules not valid, properties of isosceles triangles and inequalities in triangles.
Extramarks is a well-known learning platform trusted for providing high-quality study materials for Classes 11 and 12. Our team of academic experts who diligently follow the latest CBSE guidelines. Needless to say, they completely understand what is legitimate as per the board’s standards.
. Students can confidently rely on our comprehensive study solutions.
You will find all the properties of the congruence of triangles listed in a structured way in our NCERT solutions for Class 9 Mathematics Chapter 7. It has all the sections and subsections properly divided and highlighted. All the key points in each section are being written in the format required in CBSE examinations. Thus, it proves to be a great guide for students to step up their preparation to get excellent results.
Extramarks website has a repository of all the NCERT study materials, NCERT textbooks, NCERT revision notes, NCERT Solutions, past year papers and mock tests. Students can sign up at Extramarks’ website regularly to keep themselves updated regarding the latest CBSE curriculum.
Key Topics Covered In NCERT Solutions for Class 9 Mathematics Chapter 7
You have read about the basics of triangles in earlier classes. You are already familiar with different types of triangles, their properties and how to refer to a triangle in a figure.
NCERT Class 9 Mathematics Chapter 7 briefly talks about their congruency and all the properties associated with it. You will know about the rules associated with congruence and its application in geometry. . You can look up NCERT Solutions for Class 9 Mathematics Chapter 7 on our Extramarks’ website where you can find the chapter being covered in detail which clears their concepts and helps them to think analytically to solve a problem..
We at Extramarks believe in going beyond the call of our duty to facilitate students with great learning experience ; be it note making, guiding the students, designing the mock tests or analysing the results. Hence, parents, teachers and students have faith and trust in Extramarks NCERT Solutions for reliable and authentic notes which has further strengthened over the years.
This chapter is mostly based on theorems, formulas and properties of triangles . Detailed study of this chapter will help students to do the exercises and find solutions effectively and easily.
Introduction
This section helps you recall all the basics of triangles covered in the lower classes. Further, it gives you detailed insights of the topics you will study in this chapter. The Extramarks subject matter experts have meticulously covered each and every exercise and solution of the chapter in our NCERT Solutions for Class 9 Mathematics Chapter 7. Students can practice with NCERT books and cross check their answers and if required they may even go ahead and solve other sample papers to strengthen their base.
Congruence of Triangles
The figures which are the same in shape and size or are equal in all aspects are known as congruent. When two triangles are of the same shape and of the same size they are called congruent triangles.
In this section, you will learn how to interpret congruence of triangles by analysing their sides and angles. All your doubts regarding congruence will be cleared with the help of the illustrations given in the chapter.
Criteria for Congruence of Triangles
There are certain criterias one needs to note while looking for congruence in two triangles. They are as follows:
Side-Angle-Side or SAS congruence rule –
Two triangles are congruent if two sides and the included angle of one triangle are equal to the two sides and the included angle of the other triangle.
Angle-Side-Angle or ASA congruence rule-
Two triangles are congruent if two angles and the included side of one triangle are equal to two angles and the included side of the other triangle.
Some properties of a Triangle
In this section, you will learn how to apply the criterion you have read about in the last section when two sides are given equal. You will also get to know about some of the theorems and their uses in various Geometrical concepts with the help of some examples given in the NCERT Solutions for Class 9 Mathematics Chapter 7.
Some More Criteria for Congruence of Triangles
You will read about some more criteria for congruence of triangles in this section. They are listed below:
Side-Side-Side or SSS congruence rule-
If three sides of one triangle are equal to the three sides of another triangle, then the two triangles are congruent.
Right angle-Hypotenuse-Side or RHS congruence rule-
If in two right triangles the hypotenuse and one side of one triangle are equal to the hypotenuse and one side of the other triangle, then the two triangles are congruent.
Inequalities in a triangle
Whenever there is a relation between the unequal sides or angles of a triangle it is called as Inequalities of a triangle. There are various activities and examples included from this section in our NCERT Solutions for Class 9 Mathematics Chapter 7 r in such a way that they can get to the point answers without wasting much time on a single topic. It gives a better understanding of all the concepts associated and helps them to solve any difficult or advanced level questions with ease.
NCERT Solutions for Class 9 Mathematics Chapter 7: Exercise & Solutions
Testing is the cornerstone of any preparation.; since it shows what you have learnt and how much you can retain. You may gauge your performance by solving the questions. However, the essential prerequisite is that you must have the right solutions and answers for you to rectify your mistakes and shortcomings.
Therefore, NCERT Solutions for Class 9 Mathematics Chapter 7 have been compiled in a systematic and organised manner to revise and cross-check your answers. You can access it from Extramarks’ website as per your convenience to ace the examinations with flying colours.
The following links has exercise specific questions and solutions for NCERT Solutions for Class 9 Mathematics Chapter 7:
- Chapter 7: Exercise 7.1 Question and answers
- Chapter 7: Exercise 7.2 Question and answers
- Chapter 7: Exercise 7.3 Question and answers
- Chapter 7: Exercise 7.4 Question and answers
- Chapter 7: Exercise 7.5Question and answers
Along with NCERT Solutions for Class 9 Mathematics Chapter 7, students can explore NCERT Solutions on our Extramarks’ website for all primary as well as secondary classes.
- NCERT Solutions Class 1
- NCERT Solutions Class 2
- NCERT Solutions Class 3
- NCERT Solutions Class 4
- NCERT Solutions Class 5
- NCERT Solutions Class 6
- NCERT Solutions Class 7
- NCERT Solutions Class 8
- NCERT Solutions Class 9
- NCERT solutions Class 10
- NCERT solutions Class 11
- NCERT solutions Class 12
NCERT Exemplar for Class 9 Mathematics
NCERT Exemplar is the collection of NCERT related- questions. It helps in laying the foundation to all the basic as well as advanced level concepts in the manner required for different competitive examinations. It is especially designed by subject matter experts. As a result, teachers and mentors suggest students to include NCERT Exemplar books in their study material. Studying NCERT textbooks alone won’t help you to crack the tests. We therefore recommend students to start using it early to beat the competition and stay ahead of the pack.
The book gives insights of all the topics from the NCERT Class 9 Mathematics textbook. You can find questions ranging from basic to advanced level; thereby making students capable of solving questions of varying degrees to strengthen their base.
Students can be rest assured that not a single topic has been left untouched in the chapter and hence are definitely going to nail the exams by referring to NCERT Solutions and NCERT Exemplar. You can get NCERT Exemplar for Class 9 Mathematics easily from the Extramarks website.
Key Features of NCERT Solutions for Class 9 Mathematics Chapter 7
In order to score well, you have to learn well and to learn well, you have to read well. Hence, NCERT Solutions for Class 9 Mathematics Chapter 7 has complete academic notes to study from. . The following are the key features: :
- It has well-versed short notes to read and learn and revise quickly and easily.
- You can also find a detailed overview of which topics to revise the most in our NCERT Solutions.
- Gradually, it will boost your confidence and hence be able to leverage your performance.
- After completing this chapter, you will have a complete idea of the congruency of the triangles and the rules needed to be applied where necessary.
- The notes are prepared by highly qualified and experienced faculty who meticulously follow the NCERT textbooks and CBSE guidelines to provide authentic and reliable study material.
Q.1
Ans.
Q.2
Ans.
Q.3 AD and BC are equal perpendiculars to a line segment AB (see Fig. 7.18). Show that CD bisects AB.
Ans.
Q.4
Ans.
Q.5
Ans.
Q.6 In figure below, AC = AE, AB = AD and ∠BAD = ∠EAC. Show that BC = DE.
Ans.
Q.7
Ans.
Q.8
Ans.
Q.9 In an isosceles triangle ABC, with AB = AC, the bisectors of ∠B and ∠C intersect each other at O. Join A to O. Show that :
(i) OB = OC
(ii) AO bisects ∠A.
Ans.
Q.10 In Δ ABC, AD is the perpendicular bisector of BC (see figure below). Show that Δ ABC is an isosceles triangle in which AB = AC.
Ans.
Q.11 ABC is an isosceles triangle in which altitudes BE and CF are drawn to equal sides AC and AB respectively (see figure below). Show that these altitudes are equal.
Ans.
Q.12
Ans.
Q.13 ABC and DBC are two isosceles triangles on the same base BC (see figure below). Show that ∠ABD = ∠ACD.
Ans.
Q.14 ΔABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB (see figure below). Show that ∠BCD is a right angle.
Ans.
Q.15 ABC is a right angled triangle in which ∠A = 90° and AB = AC. Find ∠B and ∠C.
Ans.
Q.16 Show that the angles of an equilateral triangle are 60° each.
Ans.
Q.17
Ans.
Q.18 AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that
(i) AD bisects BC
(ii) AD bisects ∠A.
Ans.
Q.19
Ans.
Q.20 BE and CF are two equal altitudes of a triangle ABC.
Show that:
(i) ΔABE ≅ ΔACF
(ii) AB = AC, i.e ABC is an isosceles triangle.
Ans.
Q.21 ABC is an isosceles triangle with AB = AC. Draw AP ⊥ BC to show that ∠B = ∠C.
Ans.
Q.22 Show that in a right angled triangle, the hypotenuse is the longest side.
Ans.
Q.23 In Fig. shown below, sides AB and AC of Δ ABC are extended to points P and Q respectively. Also, ∠PBC < ∠QCB. Show that AC > AB.
Ans.
Q.24
In Fig. shown, ∠B<∠A and ∠C<∠D. Show that AD
<bc< p=””></bc<>
Ans.
Q.25 AB and CD are respectively the smallest and longest sides of a quadrilateral ABCD (see figure below). Show that ∠A > ∠C and ∠B > ∠D.
Ans.
Q.26 In Fig 7.51, PR > PQ and PS bisects ∠QPR. Prove that ∠PSR > ∠PSQ.
Ans.
Q.27 Show that of all line segments drawn from a given point not on it, the perpendicular line segment is the shortest.
Ans.
Q.28 ABC is a triangle. Locate a point in the interior of Δ ABC which is equidistant from all the vertices of ΔABC.
Ans.
Circumcentre of a triangle is always equidistant from all the vertices of that triangle. Circumcentre is the point where perpendicular bisectors of all the sides of the triangle meet together.
In ∆ABC, we can find the circumcentre by drawing the perpendicular bisectors of sides AB, BC, and CA. O is the point where these bisectors are meeting together. Therefore, O is the point which is equidistant from all the vertices of ∆ABC.
Q.29 In a triangle locate a point in its interior which is equidistant from all the sides of the triangle.
Ans.
A point in the interior of a triangle which is equidistant from all the sides is in centre. In centre is a point which is obtained by the intersection of angle bisectors.
Here, in ∆ABC, we can find the in centre of this triangle by drawing the angle bisectors of the interior angles of this triangle. I is the point where these angle bisectors are intersecting each other. Therefore, I is the point equidistant from all the sides of ∆ABC.
Q.30 In a huge park, people are concentrated at three points (see figure below):
A: where there are different slides and swings for children,
B: near which a man-made lake is situated,
C: which is near to a large parking and exit. Where should an icecream parlour be set up so that maximum number of persons can approach it?
Ans.
Icecream parlour should be set up at equidistant point from three points A, B and C so that maximum number of people will approach there.
When we join three points A, B and C, we get a triangle. A point which is equidistant from three vertex is called Circumcentre.
In figure, Circumcentre O is obtained by intersection of perpendicular bisectors of sides of triangle ABC.
At this point of icecream parlour, maximum number of people will approach.
Q.31 Complete the hexagonal and star shaped Rangolies [see the figure below (i) and (ii)] by filling them with as many equilateral triangles of side 1 cm as you can. Count the number of triangles in each case. Which has more triangles?
Ans.
Please register to view this section
FAQs (Frequently Asked Questions)
1. What are the important topics covered in NCERT Class 9 Mathematics Chapter 7?
Properties of triangles, congruence of triangles, rules of congruency, equalities of triangles, inequalities of triangles, basic proportionality theorem, similarities of triangles etc are some of the important topics covered in NCERT Class 9 Mathematics Chapter 7.
You can find all these important topics in NCERT study material and NCERT Solutions for Class 9 Mathematics Chapter 7 on the Extramarks website, a source trusted by students and teachers.
2. Where can I find more information about the NCERT Class 9 Mathematics Chapter 7?
You can find chapter related as well as extra information in NCERT Solutions for Class 9 Mathematics Chapter 7 available on Extramarks’ website. Once you refer to it, you will develop stronger conceptual understanding.Extramarks which tries to do away with rote learning and supplements their studies with experiential learning and other innovative educational materials.
Extramarks website is reliable and is trusted by lakhs of teachers and students as it always motivates everyone to be a step ahead of the competition.