Electrochemistry Class 12 NCERT Solutions Chapter 3 Chemistry
NCERT Solutions Class 12 Chemistry Chapter 3 Electrochemistry explains the pivotal concept of the chapter. Furthermore, the latest term-wise CBSE syllabus 2023-2024 ensures that the content included is appropriate for the students to proceed in their respective streams.
Electrochemistry is the learning of the exchange between electrical and chemical energy. It has critical applications in daily life, stretching from the battery that controls your portable radio devices to the electrorefining that produces the copper pipes carrying your drinking water. These electrochemical processes utilize oxidation and reduction reactions. An oxidation reaction involves the loss of one or more electrons from a chemical species. A reduction reaction is the gain of one or more electrons by a chemical species. Every detail regarding electrochemistry that a student needs is available on the Extramarks website under electrochemistry Class 12 NCERT Solutions Chapter 3 Chemistry.
The Electrochemistry class 12 NCERT Solutions Chapter 3 Chemistry is a comprehensive material that has answers to the exercise present in the NCERT textbook. The NCERT Solutions have been provided in a clear and stepwise process for ease of understanding. For example, at Extramarks, we start with the electrical properties of conductors and their types and continue with their functions, applications, and relationship with temperature. Next, we will explain electrode potential, batteries, fuel cells, and corrosion. So let us start an electrifying tour experience named Electrochemistry with NCERT Solutions Class 12 Chemistry Chapter 3.
NCERT Solutions for Class 12 Chemistry
Key Topics Covered In NCERT Solutions Class 12 Chemistry Chapter 3
Some of the key topics covered under Electrochemistry Class 12 NCERT Solutions Chapter 3 Chemistry are mentioned in the table below.
Unit |
Topic |
Ch 3.1 |
Introduction to an electrochemical cell |
Ch 3.2 |
Half cells and cell potential |
Ch 3.3 |
Primary and secondary cells |
Ch 3.4 |
Types of the electrochemical cell |
Ch 3.5 |
Applications of Electrochemical cells |
Ch 3.6 |
Nernst Equation |
A brief of the key topics under class 12 Electrochemistry NCERT Solutions Chapter 3 Chemistry
Introduction to an electrochemical cell
An electrochemical cell is a device that can produce electrical energy from the chemical reaction produced in it. These devices can convert chemical energy into electrical energy or vice versa. A simple example of an electrochemical cell is a standard 1.5V cell used to power many electrical appliances such as tv remotes, toys, watches. Such cells capable of producing an electric current from the chemical reactions are called Galvanic or Voltaic cells. Those that create chemical reactions via electrolysis are known as electrolytic cells. Students quickly understand electrochemical cells by class 12 electrochemistry NCERT Solutions Chemistry Chapter 3.
Detailed diagram of the electrochemical cell
Electrochemical cells normally consist of a cathode and an anode.
- Cathode: It represents a positive sign since electrons are absorbed here. A reduction reaction always occurs in the cathode of an electrochemical cell.
- Anode: It denotes a negative sign since electrons are released here. Oxidation reaction occurs here, and electrons move out of the anode. Students refer to NCERT Solutions Class 12 Chemistry Chapter 3.
The cathode must be represented on the right side in an electrochemical cell, whereas the anode on the left side.
Half cells and cell potential
Electrochemical cells connect two half cells, each consisting of an electrode dipped in the electrolyte. This same electrolyte can be applied to half cells. A salt bridge is connected with these half cells, which come up with a platform to form ionic contact between them, not allowing them to fuse. A good example of a salt bridge is a filter paper dipped in potassium nitrate solution Or NaCl solutions. Students may refer to NCERT Solutions Class 12 Chemistry
One of the half cells of the electrochemical cell loses electrons due to oxidation, and the other gains one electron in a reduction process. As a result, an equilibrium reaction occurs in both the half cells, and once the equilibrium reaches net voltage becomes zero, the cell stops producing electricity.
The tendency of an electrode in contact with an electrolyte to gain or lose an electron is explained by its electrode potential. Therefore, the value of these potentials can predict the overall cell potential. Commonly, the electrode potentials are measured with the help of the standard hydrogen electrode as a reference electrode (known electrode potential), given in NCERT Solutions Class 12 Chemistry Chapter 3.
Primary and secondary cells
- Primary cells are used as “use and throw” galvanic cells. These electrochemical reactions that take place in this cell are irreversible. Therefore, the reactants are utilised to create electrical energy, and the cell is not producing an electric current once the reactants are consumed completely
- Secondary cells are also called rechargeable batteries. The electrochemical reaction that takes place in these cells is reversible. The cell can be used as a Galvanic cell and an electrolyte cell. Students can understand further by referring to NCERT Solutions Class 12 Chemistry Chapter 3.
Types of the electrochemical cell
The electrochemical cells are of two types, Galvanic cells, and Electrolytic cells.
- Galvanic cell: In a galvanic cell, a spontaneous reaction occurs, the chemical energy is converted into electrical energy. It is also known as the Voltaic cell or Daniel cell.
- Electrolytic cell: The nonspontaneous redox reaction is carried out by electrical energy in an electrolytic cell.
This will help understand the brief knowledge of electrochemical cells under NCERT Solutions Class 12 Chemistry Chapter 3.
Applications of Electrochemical cells
Some of the applications include
- Electrolytic cells are applied in the electrorefining of many non-ferrous metals. These are also utilisedin the electrowinning of these metals.
- The production of high-purity metals such as Lead, Zinc, Aluminum, and Copper involves using electrolytic cells.
- Metallic sodium can be extracted from molten NaCl by placing it in an electrolytic cell and passing an electric current.
- Fuel cells are an essential class of electrochemical cells that serve as a source of clean energy in several remote locations.
The application of electrochemical cells is more defined in the NCERT Solutions Class 12 Chemistry Chapter 3.
Nernst Equation
The Nernst equation is named by” German physicist Walther Nernst”. This equation guarantees cell potential under nonstandard conditions, relates the measured potential to the reaction quotient, and permits the exact measurement of equilibrium constants.
Let us consider an electrochemical reaction shown in the following type
aA + bB ⇾ cC + dD
The equation can be written as follows.
Ecell = E–cell – RT/ nF lnQ
= E–cell – RT/ nF ln [C]c [D]d
—————-
[A]a [B]b
In the case of a Daniel cell, the Nernst equation is as follows
Ecell = E–cell – RT/ nF lnQ
E–cell – RT/ 2F ln [Zn2+]
—————-
[Cu2+]
This equation implies that the value increases with the increase in the concentration of Copper ions and decreases the concentration of Zn ions. Students may refer to NCERT Solutions Class 12 Chemistry Chapter 3 for a more detailed explanation.
Fuel cells: Galvanic cells that are designed to convert the energy of fuel combustion like hydrogen, methane, methanol, etc., directly into electrical energy are called fuel cells.
Corrosion: Metals react with atmospheric oxygen and produce metal oxides that are basic in nature because they react with water to form bases.
In the case of rusting of iron, the iron reacts with the oxygen present in air and moisture and develops rust (hydrated iron (III) oxide). More details of corrosion properties are shown in NCERT class 12 chapter 3 Electrochemistry.
4Fe + 3O2 + 2 H2O → 2Fe2O3
Students may refer to Extramarks NCERT Solutions Class 12 Chemistry Chapter 3 for more details on fuel cells and corrosion.
NCERT Solutions Class 12 Chemistry Chapter 3 is explained in detail by the subject matter experts at Extramarks. In addition to chapter 3, students can access NCERT Solution for all other Chemistry chapters of class 12. Furthermore, students can click on the links provided below to access the study material of different classes.
NCERT Solution Class 11
NCERT Solution Class 10
NCERT Solution Class 9
NCERT Solution Class 8
NCERT Solution Class 7
NCERT Solution Class 6
NCERT Solution Class 5
NCERT Solution Class 4
NCERT Solution Class 3
NCERT Solution Class 2
NCERT Solution Class 1
Electrochemistry NCERT Solutions Class 12 Chemistry Chapter 3 Exercise & Answer Solutions
Students may refer to the Electrochemistry NCERT Solutions Class 12 Chemistry Chapter 3 Electrochemistry on Extramarks. The exercise and answer solutions are explained in detailed to help students understand the various concepts mentioned in the chapter. Every minute detail that a student may need to understand electrochemistry is mentioned in the NCERT solutions.
In addition to exercise and answer solutions, at Extramarks we provide sample question papers, past year question papers, important questions, revision notes, and more. Students may find all information under one channel, making it easier for them to study, especially during an examination.