NCERT Solutions for Class 6 Maths Chapter 7 Fractions (Ex 7.3) Exercise 7.3

NCERT Solutions for Class 6 Maths Chapter 7 Fractions (Ex 7.3) Exercise 7.3

Maths is a highly demanding subject as it is used in many fields of study. Subjects like Physics, Chemistry, Economics, etc., use mathematical principles frequently to explain concepts and solve numerical problems. Basic arithmetic calculations are very essential in today’s world since they are helpful in carrying out daily life activities such as cooking, travelling, shopping, etc. Class 6 students have Maths as an important subject in their course. They are required to regularly practise exercises to score higher marks in the final examination of Maths. Regular practise is necessary for improving the speed and accuracy of solving questions. Students are encouraged to identify their strengths and weaknesses in Maths. Understanding weaker sections will assist students to spend more time on making them strong, which in turn will help them score well in the Maths examination. Students are advised to work more on the topics that are difficult. They will be able to practise questions related to difficult topics using the NCERT solutions provided by Extramarks. Class 6 students must download the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 from the Extramarks learning platform. Class 6 students should focus on each of the subjects in their course while preparing for the final examinations. They need to develop a strategy for covering the chapters included in the syllabus. The latest syllabus of each subject in Class 6 is available on the Extramarks learning portal. Preparing according to the syllabus helps in staying on the correct path of exam preparation. It also helps students  save time and effort.

Concentration is required when practising exercise questions from the Maths chapters. Students must actively concentrate when writing solutions to questions. Each of the derivations given in the chapters should be focused on carefully. Derivations are important for learning the application of formulae to find solutions to questions. It is also necessary to go through the solved examples given in the NCERT textbook of Class 6 Maths. Solved examples are important for learning the methods to solve questions and students will also get familiar with the types of questions that can be framed from a particular topic. Many questions necessitate step-by-step solutions. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 are useful in learning to provide step-by-step solutions to questions. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 are prepared by the best Maths teachers and is thoroughly explained. All of the exercises in Chapter 7 are crucial because questions from them may appear in the examination. Class 6 students must continue to practise all of the Chapter 7 exercise questions. Students are advised to assess their exam preparation from time to time. This is necessary for making the required changes in the final exam preparation of Maths. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 are very important for assessing Maths exam preparation.

Students who are still looking for solutions to questions from Maths Class 6 Chapter 7 Exercise 7.3 are advised to make use of the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3. These solutions are designed as per the latest syllabus of Maths. Exercise 7.3 contains 9 questions and each of them should be practised. If students are having doubts about solving any question of Exercise 7.3, they must refer to the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3. Questions 1 and 2 consist of various diagrams that students need to pay attention to. Both the questions can be easily solved using the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3. It is important that students understand the requirements of the questions before attempting to solve them. Class 6 students can solve questions of Class 6th Math Exercise 7.3 according to their requirements by utilising the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3. Students must completeeach exercise of Chapter 7 to master the topics of the chapter. Solving questions with the help of the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 is useful in mastering topics of Chapter 7.

It is recommended that students practise NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3, sample papers and past years’ papers to boost their preparation level. Past years’ papers on Maths are important for getting an overview of the paper pattern of Maths. Preparing according to the paper pattern is important for scoring well in the final examination. Class 6 students can find the past years’ papers of Maths on Extramarks. Topics that have a higher weightage from anexamination perspective should be practised more. All the higher-weightage topics in Class 6 Maths can be ascertained by going through the past years’ papers. Class 6 students are encouraged to solve a few sample papers before appearing in the final examination of Maths. They can download sample papers of Maths from the Extramarks learning portal. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 are also essential for solving the questions given in the past years’ papers and sample papers. It is advisable for students to access study resources from credible sources. The Extramarks website and mobile application have very authentic and upgraded study materials that students can utilise to perform well in their examinations. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 available on Extramarks are very credible and reliable study resources. Class 6 students who are facing challenges in practising the questions of Exercise 7.3 will be able to do so by using the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3. Each of the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 is helpful in giving solutions in a simple and thoroughly explained format.

Students must make use of the revision notes in order to revise the important formulae, theorems, etc., of the chapters. Class 6 students will be able to access revision notes of Maths and other subjects from Extramarks. These revision notes are very significant for improving the preparation level of students. The revision notes available on Extramarks have been designed as per the latest syllabus of Maths. The Extramarks website and mobile application consist of very reliable study resources which students can make use of to prepare well for their upcoming examinations. All the study resources are regularly updated and are checked constantly for any errors. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 are thoroughly explained, and students will be able to utilise them quite easily. The name of Chapter 7 is Fractions. The topics given in the chapter are essential for learning the basics of fractional numbers and the various operations that can be performed using them. Each topic given in Chapter 7 is important from the examination point of view. Students are advised to go through the topics one by one and practise all the exercises. They are also expected to keep referring to the solved examples given in the chapter. Solved examples are crucial for understanding methods of solving questions related to the chapter. It is crucial for students to manage their time effectively since the question paper of Maths needs to be solved within the allotted time duration. Students should practise solving questions quickly and efficiently. They can do so by making use of NCERT solutions provided by Extramarks. Practising questions with the assistance of the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 is beneficial for Class 6 students to learn better time management skills. Students from all the classes in CBSE Board can be downloaded from the Extramarks learning platform. The NCERT solutions are available in Hindi as well.Students will be able to complete their homework in an efficient manner using these NCERT solutions. All the NCERT solutions are curated by expert teachers of each subject, and students can easily utilise them.

The Class 6 Maths Chapter 7 Exercise 7.3 has more than one type of question that students need to solve. Students in Class 6 will learn to solve each type of question given in Maths Class 6 Exercise 7.3 using the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3. Question 8 is an important question from the standpoint of the examination.  Students who are facing challenges in solving this question should refer to the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3. Practising questions with the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 is beneficial for boosting the confidence of students. Students are encouraged to tackle doubts and confusions as they arise to prepare efficiently for the final examination in Maths. The Class 6 Maths Ex 7.3 Solutions are important for enhancing the learning process of Class 6 students. The NCERT textbook of Maths is the main study resource for preparation for the Maths examination. Students should rely on the textbook for covering the topics of Class 6 Maths. Each exercise given in the NCERT textbook must be practised from time to time. Students who are unable to understand the theoretical concepts given in the textbook should take help from the Extramarks learning portal. The live classes of Extramarks are very beneficial for understanding the topics in detail. Class 6 students will get a deep understanding of the concepts related to every subject in their course by attending live classes on Extramarks.

Extramarks provides study resources to students from CBSE, ICSE, and other major state boards. Extramarks learning modules are extremely important for improving students’ learning experiences. These modules are built with rich media and feature stunning visuals and graphics. Students will be able to put their knowledge in each subject to the test by taking a variety of mock tests on Extramarks. These practise tests are intended to help students in their exam preparation. The results of mock tests will help students make necessary changes in their exam preparation and will also help them get used to the examination environment. Extramarks provides high-quality study materials that students can use to supplement their ongoing preparations. These study materials are extremely reliable and important tools. Students will be able to get quick answers to their questions from Extramarks educators. They are always willing to assist students in effectively learning topics. Extramarks also helps students prepare effectively for various examinations such as JEE Mains, CUET, NEET and so on. Students will be able to build their concepts interactively through the use of video modules available on the Extramarks Learning App.

Access Other Exercises of Class 6 Maths Chapter 7

Chapter 7 – Fractions Exercises
Exercise 7.1
11 Questions & Solutions
Exercise 7.2
3 Questions & Solutions
Exercise 7.4
10 Questions & Solutions
Exercise 7.5
5 Questions & Solutions
Exercise 7.6
9 Questions & Solutions

NCERT Solutions for Class 6 Maths Chapter 7 Fractions (Ex 7.3) Exercise 7.3

The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 are available on the Extramarks learning portal in PDF format. Students can make use of the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 to prepare effectively for the Maths examination. Class 6 students will be able to access NCERT solutions for other chapters in Maths from Extramarks as well. It is necessary for students to practise questions related to each topic of Chapter 7. Regular practise of exercises given in the chapter is important for getting well-prepared for the Maths examination. Students in Class 6 need to get in the habit of solving questions in a subject like Maths. Using the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 to practise exercise questions will help students form the habit of solving questions on a regular basis. This will increase students’ chances of performing well in the Maths examination. For a subject like Maths, a sound strategy and ongoing practice are crucial. The authentic NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 are made available to students by Extramarks in order to help them achieve higher marks in the Maths examination.

Access NCERT Solutions for Class 6 Maths Chapter 7- Fractions

Class 6 students who are having issues finding the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 can access them on the Extramarks website and mobile application.

NCERT Solutions for Class 6 Maths Chapter 7 Fractions Exercise 7.3

On the Extramarks website and mobile application, students can find the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3. Additionally, Extramarks offers NCERT solutions for all the subjects covered in the Class 6 curriculum. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 are beneficial in helping students develop their problem-solving abilities. There are various ways to solve questions in Maths, and students who want to perform well in examinations must learn how to solve questions using the best methods. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 are valuable resources for learning to solve questions using the best methods. The questions from all the topics given in Chapter 7 should be consistently practised.

Q.1 Write the fractions. Are all these fractions equivalent ?
(a)

(b)

Ans.

(a)

Here, 1 2 , 2 4 = 1 2 , 3 6 = 1 2 , 4 8 = 1 2 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaqGibGaaeyzaiaabkhacaqGLbGaaeilaiaabccadaWcaaqaaiaaigdaaeaacaaIYaaaaiaacYcadaWcaaqaamaaKiaabaGaaGOmaaaaaeaadaajcaqaaiaaisdaaaaaaiabg2da9maalaaabaGaaGymaaqaaiaaikdaaaGaaiilamaalaaabaWaaqIaaeaacaaIZaaaaaqaamaaKiaabaGaaGOnaaaaaaGaeyypa0ZaaSaaaeaacaaIXaaabaGaaGOmaaaacaGGSaWaaSaaaeaadaajcaqaaiaaisdaaaaabaWaaqIaaeaacaaI4aaaaaaacqGH9aqpdaWcaaqaaiaaigdaaeaacaaIYaaaaaaa@4ED1@

So, all these fractions are equivalent.

(b)

Here, 412=13,39=13,26=13,615=25.

Q.2 Write the fractions and pair up the equivalent fractions from each row.

Ans.

Equivalent fractions are shown below :

Q.3 Replace in each of the following by the correct number :

( a ) 2 7 = 8 ( b ) 5 8 = 10 ( c ) 3 5 = 20 ( d ) 45 60 = 15 ( e ) 18 24 = 4 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaqadaqaaiaabggaaiaawIcacaGLPaaadaWcaaqaaiaaikdaaeaacaaI3aaaaiabg2da9maalaaabaGaaGioaaqaaaaacaGGGcWaaeWaaeaacaqGIbaacaGLOaGaayzkaaWaaSaaaeaacaaI1aaabaGaaGioaaaacqGH9aqpdaWcaaqaaiaaigdacaaIWaaabaaaaiaacckadaqadaqaaiaabogaaiaawIcacaGLPaaadaWcaaqaaiaaiodaaeaacaaI1aaaaiabg2da9maalaaabaaabaGaaGOmaiaaicdaaaGaaiiOamaabmaabaGaaeizaaGaayjkaiaawMcaamaalaaabaGaaGinaiaaiwdaaeaacaaI2aGaaGimaaaacqGH9aqpdaWcaaqaaiaaigdacaaI1aaabaaaaiaacckadaqadaqaaiaabwgaaiaawIcacaGLPaaadaWcaaqaaiaaigdacaaI4aaabaGaaGOmaiaaisdaaaGaeyypa0ZaaSaaaeaaaeaacaaI0aaaaiaacckaaaa@60F8@

Ans.

(a) 2 7 = 8 2 7 = 2×4 7×4 = 8 28 (b) 5 8 = 10 5 8 = 2×5 8×2 = 10 16 (c) 3 5 = 20 3 5 = 3×4 5×4 = 12 20 (d) 45 60 = 15 45÷3 60÷3 = 15 20 (e) 18 24 = 4 18÷6 24÷6 = 3 4 MathType@MTEF@5@5@+=feaaguart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaaiaabIcacaqGHbGaaeykamaalaaabaGaaGOmaaqaaiaaiEdaaaGaeyypa0ZaaSaaaeaacaaI4aaabaaaaaqaaiabgkDiEpaalaaabaGaaGOmaaqaaiaaiEdaaaGaeyypa0ZaaSaaaeaacaaIYaGaey41aqRaaGinaaqaaiaaiEdacqGHxdaTcaaI0aaaaiabg2da9maalaaabaGaaGioaaqaaiaaikdacaaI4aaaaaqaaiaabIcacaqGIbGaaeykamaalaaabaGaaGynaaqaaiaaiIdaaaGaeyypa0ZaaSaaaeaacaaIXaGaaGimaaqaaaaaaeaacqGHshI3daWcaaqaaiaaiwdaaeaacaaI4aaaaiabg2da9maalaaabaGaaGOmaiabgEna0kaaiwdaaeaacaaI4aGaey41aqRaaGOmaaaacqGH9aqpdaWcaaqaaiaaigdacaaIWaaabaGaaGymaiaaiAdaaaaabaGaaiikaiaadogacaGGPaWaaSaaaeaacaaIZaaabaGaaGynaaaacqGH9aqpdaWcaaqaaaqaaiaaikdacaaIWaaaaaqaaiabgkDiEpaalaaabaGaaG4maaqaaiaaiwdaaaGaeyypa0ZaaSaaaeaacaaIZaGaey41aqRaaGinaaqaaiaaiwdacqGHxdaTcaaI0aaaaiabg2da9maalaaabaGaaGymaiaaikdaaeaacaaIYaGaaGimaaaaaeaacaGGOaGaamizaiaacMcadaWcaaqaaiaaisdacaaI1aaabaGaaGOnaiaaicdaaaGaeyypa0ZaaSaaaeaacaaIXaGaaGynaaqaaaaaaeaacqGHshI3daWcaaqaaiaaisdacaaI1aGaey49aGRaaG4maaqaaiaaiAdacaaIWaGaey49aGRaaG4maaaacqGH9aqpdaWcaaqaaiaaigdacaaI1aaabaGaaGOmaiaaicdaaaaabaGaaiikaiaadwgacaGGPaWaaSaaaeaacaaIXaGaaGioaaqaaiaaikdacaaI0aaaaiabg2da9maalaaabaaabaGaaGinaaaaaeaacqGHshI3daWcaaqaaiaaigdacaaI4aGaey49aGRaaGOnaaqaaiaaikdacaaI0aGaey49aGRaaGOnaaaacqGH9aqpdaWcaaqaaiaaiodaaeaacaaI0aaaaaaaaa@A77F@

Q.4 Find the equivalent fraction of having
(a) denominator 20 (b) numerator 9
(c) denominator 30 (d) numerator 27

Ans.

(a) Denominator 2035=2035=3×45×4=1220(b) Numerator 9 35=935=3×35×3=915(c) Denominator 30 35=3035=3×65×6=1830(d) Numerator 27 35=2735=3×95×9=2745

Q.5 Find the equivalent fraction of

36 48 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaGqabiaa=ndacaWF2aaabaGaa8hnaiaa=Hdaaaaaaa@3C01@

having
(a) numerator 9 (b) denominator 4

Ans.

( a )Numerator 9 36 48 = 9 36÷4 48÷4 = 9 12 ( b ) Denominator 4 36 48 = 4 36÷12 48÷12 = 3 4 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaamaabmaabaGaaeyyaaGaayjkaiaawMcaaiaaykW7caaMc8UaaeOtaiaabwhacaqGTbGaaeyzaiaabkhacaqGHbGaaeiDaiaab+gacaqGYbGaaeiiaiaabMdaaeaadaWcaaqaaiaaiodacaaI2aaabaGaaGinaiaaiIdaaaGaeyypa0ZaaSaaaeaacaaI5aaabaaaaaqaaiabgkDiEpaalaaabaGaaG4maiaaiAdacqGH3daUcaaI0aaabaGaaGinaiaaiIdacqGH3daUcaaI0aaaaiabg2da9maalaaabaGaaGyoaaqaaiaaigdacaaIYaaaaaqaamaabmaabaGaaeOyaaGaayjkaiaawMcaaiaacckacaaMc8UaaeiraiaabwgacaqGUbGaae4Baiaab2gacaqGPbGaaeOBaiaabggacaqG0bGaae4BaiaabkhacaqGGaGaaeinaaqaaiaabccacaqGGaGaaeiiamaalaaabaGaaG4maiaaiAdaaeaacaaI0aGaaGioaaaacqGH9aqpdaWcaaqaaaqaaiaaisdaaaaabaGaeyO0H49aaSaaaeaacaaIZaGaaGOnaiabgEpa4kaaigdacaaIYaaabaGaaGinaiaaiIdacqGH3daUcaaIXaGaaGOmaaaacqGH9aqpdaWcaaqaaiaaiodaaeaacaaI0aaaaaaaaa@82A6@

Q.6 Check whether the given fractions are equivalent :

( a ) 5 9 , 30 54 ( b ) 3 10 , 12 50 ( c ) 7 13 , 5 11 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakqaabeqaamaabmaabaGaaeyyaaGaayjkaiaawMcaaiaaykW7caaMc8UaaGPaVpaalaaabaWexLMBbXgBd9gzLbvyNv2CaeHbafKCPfgBGuLBPn2BKvginnfaiyqacaWF1aaabaGaa8xoaaaacaWFSaWaaSaaaeaacaWFZaGaa8hmaaqaaiaa=vdacaWF0aaaaiaacckacaaMc8oabaWaaeWaaeaacaqGIbaacaGLOaGaayzkaaWaaSaaaeaacaWFZaaabaGaa8xmaiaa=bdaaaGaa8hlamaalaaabaGaa8xmaiaa=jdaaeaacaWF1aGaa8hmaaaacaGGGcGaaiiOaaqaamaabmaabaGaae4yaaGaayjkaiaawMcaaiaacckadaWcaaqaaiaa=DdaaeaacaWFXaGaa83maaaacaWFSaWaaSaaaeaacaWF1aaabaGaa8xmaiaa=fdaaaaaaaa@6699@

Ans.

(a)

5 9 , 30 54 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaamXvP5wqSX2qVrwzqf2zLnharyaqbjxAHXgiv5wAJ9gzLbsttbacgeGaa8xnaaqaaiaa=LdaaaGaa8hlamaalaaabaGaa83maiaa=bdaaeaacaWF1aGaa8hnaaaaaaa@49D6@

The given fractions will be equivalent if the product of numerator of one fraction with denominator of another fraction is equal.

Here, 5 × 54 = 9 × 30. So, the fractions are equivalent.

(b)

3 10 , 12 50 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaamXvP5wqSX2qVrwzqf2zLnharyaqbjxAHXgiv5wAJ9gzLbsttbacgeGaa83maaqaaiaa=fdacaWFWaaaaiaa=XcadaWcaaqaaiaa=fdacaWFYaaabaGaa8xnaiaa=bdaaaaaaa@4A79@

The given fractions will be equivalent if the product of numerator of one fraction with denominator of another fraction is equal.

Here, 50×312×10So, these fractions are not equivalent. (c)MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaacaqGibGaaeyzaiaabkhacaqGLbGaaeilaiaabccacaaI1aGaaGimaiabgEna0kaaiodacqGHGjsUcaaIXaGaaGOmaiabgEna0kaaigdacaaIWaGaaGPaVlaaykW7caqGtbGaae4BaiaacYcacaqGGaGaaeiDaiaabIgacaqGLbGaae4CaiaabwgacaqGGaGaaeOzaiaabkhacaqGHbGaae4yaiaabshacaqGPbGaae4Baiaab6gacaqGZbGaaeiiaiaabggacaqGYbGaaeyzaiaabccacaqGUbGaae4BaiaabshacaqGGaGaaeyzaiaabghacaqG1bGaaeyAaiaabAhacaqGHbGaaeiBaiaabwgacaqGUbGaaeiDaiaac6caaaa@6E79@ 7 13 , 5 11 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaamXvP5wqSX2qVrwzqf2zLnharyaqbjxAHXgiv5wAJ9gzLbsttbacgeGaa83naaqaaiaa=fdacaWFZaaaaiaa=XcadaWcaaqaaiaa=vdaaeaacaWFXaGaa8xmaaaaaaa@49CE@ The given fractions will be equivalent if the product of numerator of one fraction with denominator of another fraction is equal.Here, 11×713×5 So, these fractions are not equivalent.

Q.7 Reduce the following fractions to simplest form :

(a)4860            (b)15060(c)8498         (d)1252(e)728

Ans.

(a)4860=12×412×5=45(b)15060=15×106×10=156=52(c)8498=14×614×7=67(d)1252=4×34×13=313(e)728=1×74×7=14

Q.8 Ramesh had 20 pencils, Sheelu had 50 pencils and Jamaal had 80 pencils. After 4 months, Ramesh used up 10 pencils, Sheelu used up 25 pencils and Jamaal used up 40 pencils. What fraction did each use up? Check if each has used up an equal fraction of her/his pencils ?

Total pencils Used pencils Fraction Equivalent fraction
Ramesh 20 10 10 20 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdacaaIWaaabaGaaGOmaiaaicdaaaaaaa@3C09@ 1 2 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaa@3A95@
Sheelu 50 25 25 50 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaikdacaaI1aaabaGaaGynaiaaicdaaaaaaa@3C12@ 1 2 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaa@3A95@
Jamaal 80 40 40 80 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaisdacaaIWaaabaGaaGioaiaaicdaaaaaaa@3C12@ 1 2 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaa@3A95@

Here, we can see that Ramesh, Sheelu and Jamaal has used up an equal fraction of his/her pencils.

 

 

 

Ans.

Total pencils Used pencils Fraction Equivalent fraction
Ramesh 20 10 10 20 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdacaaIWaaabaGaaGOmaiaaicdaaaaaaa@3C09@ 1 2 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaa@3A95@
Sheelu 50 25 25 50 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaikdacaaI1aaabaGaaGynaiaaicdaaaaaaa@3C12@ 1 2 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaa@3A95@
Jamaal 80 40 40 80 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaisdacaaIWaaabaGaaGioaiaaicdaaaaaaa@3C12@ 1 2 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaa@3A95@

 

 

 

 

Here, we can see that Ramesh, Sheelu and Jamaal has used up an equal fraction of his/her pencils.

Q.9 Match the equivalent fractions and write two more for each :

(i)  

250 400 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaikdacaaI1aGaaGimaaqaaiaaisdacaaIWaGaaGimaaaaaaa@3D85@

(a)  

2 3 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaikdaaeaacaaIZaaaaaaa@3A97@

(ii)  

180 200 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdacaaI4aGaaGimaaqaaiaaikdacaaIWaGaaGimaaaaaaa@3D85@

(b)  

2 5 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaikdaaeaacaaI1aaaaaaa@3A99@

(iii)  

660 990 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaiAdacaaI2aGaaGimaaqaaiaaiMdacaaI5aGaaGimaaaaaaa@3D98@

(c)  

1 2 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaaaaa@3A95@

(iv)  

180 360 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdacaaI4aGaaGimaaqaaiaaiodacaaI2aGaaGimaaaaaaa@3D8C@

(d)  

5 8 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaiwdaaeaacaaI4aaaaaaa@3A9F@

(v)  

220 550 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaikdacaaIYaGaaGimaaqaaiaaiwdacaaI1aGaaGimaaaaaaa@3D88@

(e)  

9 10 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaiMdaaeaacaaIXaGaaGimaaaaaaa@3B56@

 

 

 

 

 

 

 

 

 

 

 

Ans.

(i)  

250 400 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaikdacaaI1aGaaGimaaqaaiaaisdacaaIWaGaaGimaaaaaaa@3D85@

(d)  

5 8 , 10 16 , 15 24 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaiwdaaeaacaaI4aaaaiaacYcacaqGGaWaaSaaaeaacaaIXaGaaGimaaqaaiaaigdacaaI2aaaaiaacYcacaqGGaWaaSaaaeaacaaIXaGaaGynaaqaaiaaikdacaaI0aaaaaaa@4349@

(ii)  

180 200 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdacaaI4aGaaGimaaqaaiaaikdacaaIWaGaaGimaaaaaaa@3D85@

(e)  

9 10 , 18 20 , 27 30 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaiMdaaeaacaaIXaGaaGimaaaacaGGSaGaaeiiamaalaaabaGaaGymaiaaiIdaaeaacaaIYaGaaGimaaaacaGGSaGaaeiiamaalaaabaGaaGOmaiaaiEdaaeaacaaIZaGaaGimaaaaaaa@4403@

(iii)  

660 990 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaiAdacaaI2aGaaGimaaqaaiaaiMdacaaI5aGaaGimaaaaaaa@3D98@

(a)  

2 3 , 4 6 , 6 9 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaikdaaeaacaaIZaaaaiaacYcacaqGGaWaaSaaaeaacaaI0aaabaGaaGOnaaaacaGGSaGaaeiiamaalaaabaGaaGOnaaqaaiaaiMdaaaaaaa@405E@

(iv)  

180 360 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdacaaI4aGaaGimaaqaaiaaiodacaaI2aGaaGimaaaaaaa@3D8C@

(c)  

1 2 , 2 4 , 3 6 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaigdaaeaacaaIYaaaaiaacYcacaqGGaWaaSaaaeaacaaIYaaabaGaaGinaaaacaGGSaGaaeiiamaalaaabaGaaG4maaqaaiaaiAdaaaaaaa@4052@

(v)  

220 550 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaikdacaaIYaGaaGimaaqaaiaaiwdacaaI1aGaaGimaaaaaaa@3D88@

(b)  

2 5 , 4 10 , 6 15 MathType@MTEF@5@5@+=feaaguart1ev2aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKfMBHbqedmvETj2BSbqefm0B1jxALjhiov2DaerbuLwBLnhiov2DGi1BTfMBaebbnrfifHhDYfgasaacH8wrps0lbbf9q8WrFfeuY=Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0=yr0RYxir=Jbba9q8aq0=yq=He9q8qqQ8frFve9Fve9Ff0dmeaabaqaciGacaGaaeqabaWaaqaafaaakeaadaWcaaqaaiaaikdaaeaacaaI1aaaaiaacYcacaqGGaWaaSaaaeaacaaI0aaabaGaaGymaiaaicdaaaGaaiilaiaabccadaWcaaqaaiaaiAdaaeaacaaIXaGaaGynaaaaaaa@41CC@

Please register to view this section

FAQs (Frequently Asked Questions)

1. Which is the best place to access the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3?

The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 are available in PDF format on the Extramarks website and mobile application. The NCERT solutions available on Extramarks have been curated by experts in the Maths field. Students will learn the best methods of solving questions using these solutions.

2. How can students know all the topics and subtopics covered in Class 6 Maths?

Students must access the latest syllabus of Maths to get an overview of all the topics covered in Class 6 Maths. Class 6 students can easily access it on Extramarks. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 are prepared as per the latest syllabus of Class 6 Maths.

3. What are the various utilities of the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3?

The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 are useful for assisting students to score higher marks in the Maths examination. These solutions are important for improving the problem-solving skills of students. Students will learn to practice questions of Exercise 7.3 efficiently using the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3. Practising questions using the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 is significant for bettering the time management skills of students.

 

4. What are all the tips and tricks to perform well in the Maths examination?

The main technique to scoring well in the Maths examination is consistent practice. Students must practice questions related to each chapter in the syllabus before appearing for the Maths examination. It is also crucial to practice sample papers and past years’ papers of Maths at regular intervals. Class 6 students are supposed to make use of the study materials of Extramarks to obtain higher marks in the Maths examination. The NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 will assist Class 6 students in improving their Maths exam preparation. Students must keep revising formulae, definitions, theorems, etc related to the chapters in Maths during their exam preparation.

5. Are the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 available in PDF format on Extramarks?

Class 6 students can access the NCERT Solutions Class 6 Maths Chapter 7 Exercise 7.3 in PDF format on Extramarks. They will be able to make use of these solutions even without an internet connection. It is important for students to make use of the study materials that can be referred to according to their own convenience.