
CBSE Important Questions›

CBSE Previous Year Question Papers›
 CBSE Previous Year Question Papers
 CBSE Previous Year Question Papers Class 12
 CBSE Previous Year Question Papers Class 10

CBSE Revision Notes›

CBSE Syllabus›

CBSE Extra Questions›

CBSE Sample Papers›
 CBSE Sample Papers
 CBSE Sample Question Papers For Class 5
 CBSE Sample Question Papers For Class 4
 CBSE Sample Question Papers For Class 3
 CBSE Sample Question Papers For Class 2
 CBSE Sample Question Papers For Class 1
 CBSE Sample Question Papers For Class 12
 CBSE Sample Question Papers For Class 11
 CBSE Sample Question Papers For Class 10
 CBSE Sample Question Papers For Class 9
 CBSE Sample Question Papers For Class 8
 CBSE Sample Question Papers For Class 7
 CBSE Sample Question Papers For Class 6

ISC & ICSE Syllabus›

ICSE Question Paper›
 ICSE Question Paper
 ISC Class 12 Question Paper
 ICSE Class 10 Question Paper

ICSE Sample Question Papers›
 ICSE Sample Question Papers
 ISC Sample Question Papers For Class 12
 ISC Sample Question Papers For Class 11
 ICSE Sample Question Papers For Class 10
 ICSE Sample Question Papers For Class 9
 ICSE Sample Question Papers For Class 8
 ICSE Sample Question Papers For Class 7
 ICSE Sample Question Papers For Class 6

ICSE Revision Notes›
 ICSE Revision Notes
 ICSE Class 9 Revision Notes
 ICSE Class 10 Revision Notes

ICSE Important Questions›

Maharashtra board›

RajasthanBoard›
 RajasthanBoard

Andhrapradesh Board›
 Andhrapradesh Board
 AP Board Sample Question Paper
 AP Board syllabus
 AP Board Previous Year Question Paper

Telangana Board›

Tamilnadu Board›

NCERT Solutions Class 12›
 NCERT Solutions Class 12
 NCERT Solutions Class 12 Economics
 NCERT Solutions Class 12 English
 NCERT Solutions Class 12 Hindi
 NCERT Solutions Class 12 Maths
 NCERT Solutions Class 12 Physics
 NCERT Solutions Class 12 Accountancy
 NCERT Solutions Class 12 Biology
 NCERT Solutions Class 12 Chemistry
 NCERT Solutions Class 12 Commerce

NCERT Solutions Class 10›

NCERT Solutions Class 11›
 NCERT Solutions Class 11
 NCERT Solutions Class 11 Statistics
 NCERT Solutions Class 11 Accountancy
 NCERT Solutions Class 11 Biology
 NCERT Solutions Class 11 Chemistry
 NCERT Solutions Class 11 Commerce
 NCERT Solutions Class 11 English
 NCERT Solutions Class 11 Hindi
 NCERT Solutions Class 11 Maths
 NCERT Solutions Class 11 Physics

NCERT Solutions Class 9›

NCERT Solutions Class 8›

NCERT Solutions Class 7›

NCERT Solutions Class 6›

NCERT Solutions Class 5›
 NCERT Solutions Class 5
 NCERT Solutions Class 5 EVS
 NCERT Solutions Class 5 English
 NCERT Solutions Class 5 Maths

NCERT Solutions Class 4›

NCERT Solutions Class 3›

NCERT Solutions Class 2›
 NCERT Solutions Class 2
 NCERT Solutions Class 2 Hindi
 NCERT Solutions Class 2 Maths
 NCERT Solutions Class 2 English

NCERT Solutions Class 1›
 NCERT Solutions Class 1
 NCERT Solutions Class 1 English
 NCERT Solutions Class 1 Hindi
 NCERT Solutions Class 1 Maths

JEE Main Question Papers›

JEE Main Syllabus›
 JEE Main Syllabus
 JEE Main Chemistry Syllabus
 JEE Main Maths Syllabus
 JEE Main Physics Syllabus

JEE Main Questions›
 JEE Main Questions
 JEE Main Maths Questions
 JEE Main Physics Questions
 JEE Main Chemistry Questions

JEE Main Mock Test›
 JEE Main Mock Test

JEE Main Revision Notes›
 JEE Main Revision Notes

JEE Main Sample Papers›
 JEE Main Sample Papers

JEE Advanced Question Papers›

JEE Advanced Syllabus›
 JEE Advanced Syllabus

JEE Advanced Mock Test›
 JEE Advanced Mock Test

JEE Advanced Questions›
 JEE Advanced Questions
 JEE Advanced Chemistry Questions
 JEE Advanced Maths Questions
 JEE Advanced Physics Questions

JEE Advanced Sample Papers›
 JEE Advanced Sample Papers

NEET Eligibility Criteria›
 NEET Eligibility Criteria

NEET Question Papers›

NEET Sample Papers›
 NEET Sample Papers

NEET Syllabus›

NEET Mock Test›
 NEET Mock Test

NCERT Books Class 9›
 NCERT Books Class 9

NCERT Books Class 8›
 NCERT Books Class 8

NCERT Books Class 7›
 NCERT Books Class 7

NCERT Books Class 6›
 NCERT Books Class 6

NCERT Books Class 5›
 NCERT Books Class 5

NCERT Books Class 4›
 NCERT Books Class 4

NCERT Books Class 3›
 NCERT Books Class 3

NCERT Books Class 2›
 NCERT Books Class 2

NCERT Books Class 1›
 NCERT Books Class 1

NCERT Books Class 12›
 NCERT Books Class 12

NCERT Books Class 11›
 NCERT Books Class 11

NCERT Books Class 10›
 NCERT Books Class 10

Chemistry Full Forms›
 Chemistry Full Forms

Biology Full Forms›
 Biology Full Forms

Physics Full Forms›
 Physics Full Forms

Educational Full Form›
 Educational Full Form

Examination Full Forms›
 Examination Full Forms

Algebra Formulas›
 Algebra Formulas

Chemistry Formulas›
 Chemistry Formulas

Geometry Formulas›
 Geometry Formulas

Math Formulas›
 Math Formulas

Physics Formulas›
 Physics Formulas

Trigonometry Formulas›
 Trigonometry Formulas

CUET Admit Card›
 CUET Admit Card

CUET Application Form›
 CUET Application Form

CUET Counselling›
 CUET Counselling

CUET Cutoff›
 CUET Cutoff

CUET Previous Year Question Papers›
 CUET Previous Year Question Papers

CUET Results›
 CUET Results

CUET Sample Papers›
 CUET Sample Papers

CUET Syllabus›
 CUET Syllabus

CUET Eligibility Criteria›
 CUET Eligibility Criteria

CUET Exam Centers›
 CUET Exam Centers

CUET Exam Dates›
 CUET Exam Dates

CUET Exam Pattern›
 CUET Exam Pattern
Surface Area Of A Pyramid Formula
A Surface Area of a Pyramid Formula is calculated by summing the areas of all of its faces. A pyramid is a threedimensional form with a polygonal base and triangleshaped side faces that meet at a location known as the apex or vertex. The altitude or height of the pyramid is the perpendicular distance from the peak to the centre of the base. The “slant height” is the length of the perpendicular path traced from a triangle’s apex to its base (side face). The surface area of a pyramid, the Surface Area of a Pyramid Formula, a few examples with solutions, and practice problems are all available to students.
The notes and solutions based on the Surface Area of a Pyramid Formula have been curated by Extramarks experts after great consideration and research on the past years’ question papers. The framework of the Surface Area of a Pyramid Formula notes designed by Extramarks experts is very easy to understand and comprehend. The Surface Area of a Pyramid Formula notes are extremely internetcompatible and students can also download them for offline study and reference.
What is the Surface Area of Pyramid?
A Surface Area of a Pyramid Formula is a measurement of the entire area occupied by all of its faces. Students can check out the pyramid shown on the Extramarks website and mobile application to view all of its faces as well as its peak, altitude, slant height, and base.
 Since a Surface Area of a Pyramid Formula equals the total of its face areas, it is expressed in square units like m2, cm2, in2, ft2, etc. The Lateral Surface Area (LSA) and the Total Surface Area are the two different types of surface areas that make up a pyramid (TSA).
 The total area of a pyramid’s side faces (triangles) is the lateral surface area, or LSA.
 The LSA of the pyramid plus the Base area equals the Total Surface Area (TSA) of a pyramid.
 Without any other details, the surface area of a pyramid generally refers to the entire pyramid.
The notes and solutions for the Surface Area of a Pyramid Formula are also made available in Hindi for students of various other boards. Comprehension of the Surface Area of a Pyramid Formula is made easier with the help of these notes, thanks to Extramarks experts. The notes and solutions based on the Surface Area of a Pyramid Formula have been prepared in accordance to and while pertaining to the NCERT Syllabus, emulating the structure of the NCERT books.
Surface Area of Pyramid Formula
Finding the Surface Area of a Pyramid Formula faces and putting them together will provide the pyramid’s surface area. There is a particular Surface Area of a Pyramid Formula to determine the lateral surface area and total surface area of a regular pyramid, defined as one whose base is a regular polygon and whose height passes through the centre of the base. Consider a regular pyramid with a base area of “B,” a base perimeter of “P,” and a slant height of “l” (the height of each triangle). Then,
The pyramid’s Lateral Surface Area (LSA) equals (1/2) Pl
The TSA of a pyramid is equal to LSA plus base area, which is equal to (1/2) Pl + B.
Students must utilize the Surface Area of a Pyramid Formula for calculating the polygonal area to determine the base areas in this case. Students can understand how to arrive at the Surface Area of a Pyramid Formula for a pyramid’s surface area.
Having carefully considered and researched previous years’ question papers, Extramarks experts have crafted notes and solutions based on the Surface Area of a Pyramid Formula. Surface Area of a Pyramid Formula notes designed by Extramarks experts are easy to understand and comprehend. In addition to being extremely internetcompatible, the Surface Area of a Pyramid Formula notes can also be downloaded for offline study and reference.
Proof of Surface Area of Pyramid Formula
The perimeter and slant height of a pyramid make up its Surface Area of a Pyramid Formula. Students can use a specific pyramid as an example to better grasp the LSA and TSA Surface Area of a Pyramid Formula for pyramids. Students think about a square pyramid with a length “a” for the base and a height “l” for the tilt.
Then,
 The base area (area of square) of the pyramid is, B = a2
 The base perimeter (perimeter of the square) of the pyramid is, P = 4a
 The area of each of the side faces (area of a triangle) = (1/2) × base × height = (1/2) × (a) × l
 Therefore, the sum of all side faces (sum of all 4 triangular faces) = 4 [(1/2) × (a) × l] = (1/2) × (4a) × l = (1/2) Pl. (Here, we replaced 4a with P which represents its perimeter.)
Hence, the Lateral Surface Area of the pyramid (LSA) = (1/2) Pl
We know that the Total Surface Area of a pyramid (TSA) is obtained by adding the base and lateral surface areas. Thus,
The total surface area of the pyramid (TSA) = LSA + base area = (1/2) Pl + B
Using these two formulas, students can derive the Surface Area of a Pyramid Formula of different types of pyramids.
Examples on Surface Area of Pyramid
Figure 1: If a square pyramid’s base has a side length of 14 inches and a slant height of 20 inches, determine the lateral surface area of the pyramid.
Solution:
The base’s side length, a, is 14 inches.
The base’s (square) perimeter is thus given by P = 4a = 4(14) = 56 inches.
Slant height, 20inch length
A square pyramid’s lateral surface area is given by Lateral surface area (LSA) = (1/2) Pl = (1/2) (56) 20 = 560 in2.
Consequently, the suggested pyramid has a lateral surface area of 560 in2.
Students can find more examples like the one mentioned above in the Surface Area of a Pyramid Formula on the Extramarks website and mobile application.
Practice Questions on Surface Area of Pyramid
Q.1 The formula for a pyramid’s lateral surface area is LSA = (1/2) Pl, where “P” stands for the base’s perimeter and “l” for the slant height.
Responses
a.) True
b.) False
Answer: False
Q.2
If the altitude (h) and the base length (a) of a square pyramid is given, its slant height (l) can be calculated with the formula:
Responses
l2 = (a/2)2 + h2
l, 2, = (a/2), 2, + h, 2
l2 = (h/2)2 + a2
l, 2, = (h/2), 2, + a 2
Answer: l2 = a2 + h2
FAQs (Frequently Asked Questions)
1. What is the definition of a pyramid's surface area?
A Surface Area of a Pyramid Formula is calculated as the total of all of its face areas. The total surface area (TSA), which is the sum of all the areas of the faces, and the lateral surface area (LSA), which is the sum of the areas of the side faces, are the two different types of surface areas.
2. What is the Pyramid's Total Surface Area?
A Surface Area of a Pyramid Formula is calculated by summing the areas of all of its faces (both the base and the side faces). The equation TSA = (1/2) Pl + B may be used to get the total surface area of a pyramid where the base perimeter is P, the base area is B, and the slant height is l.
3. What is the pyramid's lateral surface area?
A pyramid’s lateral surface area is equal to the sum of all of its side faces (which are triangles). The formula LSA = (1/2) Pl, where P is the base’s perimeter and l is the slant height, is used to determine a pyramid’s lateral surface area.
4. What is the Surface Area of a Pyramid Formula?
A pyramid has two different types of surface areas: the Surface Area of a Pyramid Formula and the lateral surface area. The following Surface Area of a Pyramid Formula is used to determine these two regions.
Surface area overall = (1/2) Pl + B
(1/2) = lateral surface area where “P” stands for the base perimeter, “B” stands for the base area, and “l” stands for the slant height.
5. How can students determine a Surface Area of a Pyramid Formula with Slant Height?
The slant height may be used to compute the Surface Area of a Pyramid Formula for calculating a pyramid’s surface area. The equation (1/2) Pl + B can be used to get the object’s total surface area. Think about a pyramid with a slant height of “l,” a base perimeter of “P,” and a base area of “B.” The formulae for calculating a polygon’s area may be used to determine the base area.
6. How can students calculate a Surface Area of a Pyramid Formula given its height (or Altitude)?
If the altitude is known, the surface area of a pyramid may be determined. Consider a pyramid with a base that is a regular polygon with side length “a,” a slant height of “l,” and an altitude of “h.” If just “a” and “h” are provided, and we still need to calculate the surface area, students must first determine the slant height. They can use the subsequent stages to comprehend this.
Step 1: Apply the Pythagoras theorem to find “l,” which is l2 = (a/2)2 + h2.
Step 2. Determine the base perimeter, or “P.”
Step 3. Locate the base area “B.”