NCERT Solutions Class 7 Maths Chapter 4

NCERT Solutions for Class 7 Mathematics Chapter 4 

NCERT Solutions for Class 7 Mathematics Chapter 4 Simple Equations 

The NCERT Solutions for Class 7 Mathematics Chapter 4 by Extramarks is a compilation of detailed step-by-step solutions to all exercises included in this chapter.

Students should practise all the exercise questions to get in-depth knowledge about the topics. The solutions are crafted by the subject matter experts, who have framed solutions in a systematic and organised manner  which is easy to understand. Students who refer to these materials will be able to prepare confidently  for their exams and achieve desired  results. 

NCERT Solutions for Class 7 Mathematics Chapter 4 Simple equations

Access NCERT Solutions for Class 7 Mathematics Chapter 4 – Simple Equations 

NCERT Solutions for Class 7 Mathematics Chapter 4 

Chapter 4 of Class 7 Mathematics is on simple equations divided into five major sections. It is one of the most important chapters in Class 7 Mathematics, as it brushes-up  basic concepts of algebraic equations. 

Students are advised to go through the chapter to get a clear understanding of the concepts in simple equations. The solutions to the questions in this chapter provided by Extramarks will help students to clarify the concepts and they will be able to  solve any questions in the term tests and exams confidently. 

 Following are the important topics covered under NCERT Class 7 Mathematics Chapter 4.

  1. Stepping up of an equation 
  2. Review of what we know
  3. What Equation is?
  4. Solving an equation
  5. More Equations
  6.  From Solution to Equation
  7. Application of Simple Equations to practical situations

NCERT Solutions for Class 7 Mathematics Chapter 4 Exercises 

The total number of questions in each of the chapter’s exercises are given in the table below.

                                                            Chapter 4 Simple Equations 
Exercise 4.1 6   questions & Answers
Exercise 4.2 4  Questions & Answers  
Exercise 4.3 4 Questions & Answers 
Exercise 4.4 4 Questions & Answers  

Facts 

  • A variable takes on different numerical values whereas a constant has a fixed value. 
  • An equation is a statement of a variable in which two expressions of the variable should have equal value.
  • An equation remains unchanged if its LHS and RHS are interchanged.
  • Transposing a number means moving it to the other side.
  • The equations remain unchanged when we:
  • Add the same number to both sides. 
  • Subtract the same number from both sides.
  • Multiply  and divide both sides by the same number.
  • When we transpose a number from one side of the equation to the other its sign changes

Variable 

A variable does not have a fixed value. The numerical value of the variable changes. These variables are denoted by letters of the alphabet such as l, m, n, p, q, r, s, t, u, v, w, x, y, z, etc. Expressions are formed when we perform operations such as addition, subtraction, multiplication, and division on variables. 

  • The value of an expression depends upon the chosen value of the variable. If there is only one term in an expression then it is called a monomial expression.
  • If there are two terms in an expression then it is called a binomial expression. 
  • If there are three terms in an expression then it is called a trinomial expression. 
  • A polynomial expression is an expression that has four terms.

Note: A polynomial expression can have many terms but none of the terms can have a negative exponent for any variable.

An Equation

An equation is a mathematical statement on a variable where two expressions on either side of the equal sign should have equal value. At least one of the expressions must contain the variable. 

Note: An equation does not change when the expression on the left-hand side or the right-hand side is interchanged. 

In an equation, there is always an equality sign between two expressions.

Example: Write the following statements in the form of equations.

  1. The difference of five times x and 11 is 28.
  2. One-fourth of a number minus 8 is 18.

Solution:

  1. We have five times x that is 5x

The difference of 5x-11 is 5x-11

5x-11=28

Thus, the required equation is 5x-11=28

  1. Let the number be x

One-fourth of x is ¼(x)

Now, one-fourth of x minus 8 is 1/4(x) – 8

Thus, the required equation is ¼(x) – 8=18

Let us see one more example which will help you with Exercise 4.1 of NCERT solutions chapter 4 

Example: Write a statement for the equation 2x-5=15

Solution: 2x-5=15

Taking away 5 from twice a number is 15

Solving an Equation 

We use this principle when we solve an equation. The equality sign between the LHS and RHS corresponds to the horizontal beam of the balance. 

An equation remains undisturbed or unchanged:

  1. If LHS and RHS are interchanged.
  2. To both the sides, if the same number is added
  3. From both sides if the same number is subtracted.
  4. When both LHS and RHS are multiplied by the same number 
  5. When both LHS and RHS are divided by the same number

To understand the concept better, let us try to solve an example. This will help you with exercise 4.2 of NCERT Solutions Chapter 4.

Example: Solve 5x-3=12

Adding 3 to both sides, we get 

5x-3+3=12+3

5x=15

Dividing both sides by 5, we get 5x/5=15/5

x=3, which is the required solution.

Note: For checking  the answer, we substitute the value of the variable in the given equation

i.e., L.H.S = (5*3)-3= 15-3= 12= R.H.S

or L.H.S = R.H.S

Example: ½(x) + 5= 65

Subtracting 5 from both sides we have,

½(x) +5-5 = 65-5

½(x) = 60

Multiplying 2 on both sides, we have

½(x) *2 = 60*2

x = 120, is the required solution.

Forming an Equation

We have learned how to solve an equation. Now we shall form or construct the equation when the solution(root) is given. Let us know the following successive steps:

  • Start with x = 9
  • Multiply both sides by 3 

3x = 27

  • Subtract 2 from both sides 

3x – 2 = 27-2

3x – 2 = 25, which is an equation.

Note: For a given equation, you get one solution; but for a given solution, one can make many equations. 

Let us understand this with  more examples so that you can solve exercise 4.3 of NCERT Solutions Chapter 4.

Example: Solve 5(x-3) = 25

(Or) x-3 = 25/5 (Dividing both sides by 5)

(Or) x – 3 = 5

(or) x = 5+3  (Transposing -3 to R.H.S)

x = 8, which is the required solution.

Example: Solve 3(x+1)/2 = 18

Solution: 3(x+1)/2 = 18

(or) (x+1)/2 = 18/2 (Dividing both sides by 2)

(or) (x+1)/2 = 6

(or) x/2 = (6-1)/2 (Transposing 1 to R.H.S)

(or) x = (12-1)/2 = 11/2, which is the required solution.

Application of Simple Equations to Practical Situations

Let us understand this with more examples so that you can solve exercise 4.4 of NCERT Solutions Chapter 4. 

Example: The sum of five times a number and 18 is 63. Find the number 

Let the required number be x 

5 times the number is 5x

According to the condition, we have 

5x + 18 = 63

5x = 63 – 18    (Transposing 18 form L.H.S to R.H.S)

5x = 45

(or) dividing both sides by 5, we have 

5x/5  = 45/5

x = 9

Thus, the required number is = 9

Related Questions 

Question: If 2x-3 = 5, then 

  • X = 1
  • X = -1
  • X = 4
  • X = -4

Solution: x = 4

Question: If both sides of the equation are divided by the same (non–zero) quantity, the equality -

  • Does not change 
  • Changes 
  • May or may not change 
  • None of these 

Solutions: Does not change

Q.1 Complete the last column of the table.

S.No. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa83uaiaa=5cacaWFobGaa83Baiaa=5ca aaa@413A@ Equation MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xraiaa=fhacaWF1bGaa8xyaiaa=rha caWFPbGaa83Baiaa=5gaaaa@4497@ Value MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8Nvaiaa=fgacaWFSbGaa8xDaiaa=vga aaa@41CB@ Say,whethertheequation issatisfied.( Yes/No ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaaieqacaWFtbGaa8xyaiaa=LhacaWFSaGa aGjbVlaa=DhacaWFObGaa8xzaiaa=rhacaWFObGaa8xzaiaa=jhaca aMb8UaaGjbVlaa=rhacaWFObGaa8xzaiaaysW7caWFLbGaa8xCaiaa =vhacaWFHbGaa8hDaiaa=LgacaWFVbGaa8NBaaqaaiaa=LgacaWFZb GaaGjbVlaa=nhacaWFHbGaa8hDaiaa=LgacaWFZbGaa8Nzaiaa=Lga caWFLbGaa8hzaiaa=5cadaqadaqaaiaa=LfacaWFLbGaa83Caiaa=9 cacaWFobGaa83BaaGaayjkaiaawMcaaaaaaa@6A99@
(i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWFPaaaaa@3F86@ x+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=TcacaWFZaGaa8xpaiaa=bda aaa@4111@ x=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFZaaaaa@3FB4@
(ii) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWFPbGaa8xkaaaa@4070@ x+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=TcacaWFZaGaa8xpaiaa=bda aaa@4111@ x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFWaaaaa@3FB1@
(iii) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWFPbGaa8xAaiaa=Lca aaa@415A@ x+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=TcacaWFZaGaa8xpaiaa=bda aaa@4111@ x=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFTaGaa83maaaa@4062@
(iv) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWF2bGaa8xkaaaa@407D@ x7=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1cacaWF3aGaa8xpaiaa=fda aaa@4118@ x=7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWF3aaaaa@3FB8@
(v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=zhacaWFPaaaaa@3F93@ x7=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1cacaWF3aGaa8xpaiaa=fda aaa@4118@ x=8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWF4aaaaa@3FB9@
(vi) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=zhacaWFPbGaa8xkaaaa@407D@ 5x=25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xnaiaa=HhacaWF9aGaa8Nmaiaa=vda aaa@411F@ x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFWaaaaa@3FB1@
(vii) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=zhacaWFPbGaa8xAaiaa=Lca aaa@4167@ 5x=25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xnaiaa=HhacaWF9aGaa8Nmaiaa=vda aaa@411F@ x=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWF1aaaaa@3FB6@
(viii) 5x=25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xnaiaa=HhacaWF9aGaa8Nmaiaa=vda aaa@411F@ x=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFTaGaa8xnaaaa@4064@
(ix) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWF4bGaa8xkaaaa@407F@ m 3 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaWaaSaaaeaaieqacaWFTbaabaGaa83maaaacaWF 9aGaa8Nmaaaa@406C@ m=6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xBaiaa=1dacaWFTaGaa8Nnaaaa@405A@
(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=HhacaWFPaaaaa@3F95@ m 3 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaWaaSaaaeaaieqacaWFTbaabaGaa83maaaacaWF 9aGaa8Nmaaaa@406C@ m=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xBaiaa=1dacaWFWaaaaa@3FA6@
(xi) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=HhacaWFPbGaa8xkaaaa@407F@ m 3 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaWaaSaaaeaaieqacaWFTbaabaGaa83maaaacaWF 9aGaa8Nmaaaa@406C@ m=6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xBaiaa=1dacaWF2aaaaa@3FAC@

Ans.

S.No. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa83uaiaa=5cacaWFobGaa83Baiaa=5ca aaa@413A@ Equation MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xraiaa=fhacaWF1bGaa8xyaiaa=rha caWFPbGaa83Baiaa=5gaaaa@4497@ Value MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8Nvaiaa=fgacaWFSbGaa8xDaiaa=vga aaa@41CB@ Say,whethertheequation issatisfied.( Yes/No ) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaaieqacaWFtbGaa8xyaiaa=LhacaWFSaGa aGjbVlaa=DhacaWFObGaa8xzaiaa=rhacaWFObGaa8xzaiaa=jhaca aMb8UaaGjbVlaa=rhacaWFObGaa8xzaiaaysW7caWFLbGaa8xCaiaa =vhacaWFHbGaa8hDaiaa=LgacaWFVbGaa8NBaaqaaiaa=LgacaWFZb GaaGjbVlaa=nhacaWFHbGaa8hDaiaa=LgacaWFZbGaa8Nzaiaa=Lga caWFLbGaa8hzaiaa=5cadaqadaqaaiaa=LfacaWFLbGaa83Caiaa=9 cacaWFobGaa83BaaGaayjkaiaawMcaaaaaaa@6A99@
(i) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWFPaaaaa@3F86@ x+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=TcacaWFZaGaa8xpaiaa=bda aaa@4111@ x=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFZaaaaa@3FB4@ No
(ii) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWFPbGaa8xkaaaa@4070@ x+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=TcacaWFZaGaa8xpaiaa=bda aaa@4111@ x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFWaaaaa@3FB1@ No
(iii) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWFPbGaa8xAaiaa=Lca aaa@415A@ x+3=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=TcacaWFZaGaa8xpaiaa=bda aaa@4111@ x=3 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFTaGaa83maaaa@4062@ Yes
(iv) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWF2bGaa8xkaaaa@407D@ x7=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1cacaWF3aGaa8xpaiaa=fda aaa@4118@ x=7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWF3aaaaa@3FB8@ No
(v) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=zhacaWFPaaaaa@3F93@ x7=1 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1cacaWF3aGaa8xpaiaa=fda aaa@4118@ x=8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWF4aaaaa@3FB9@ Yes
(vi) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=zhacaWFPbGaa8xkaaaa@407D@ 5x=25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xnaiaa=HhacaWF9aGaa8Nmaiaa=vda aaa@411F@ x=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFWaaaaa@3FB1@ No
(vii) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=zhacaWFPbGaa8xAaiaa=Lca aaa@4167@ 5x=25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xnaiaa=HhacaWF9aGaa8Nmaiaa=vda aaa@411F@ x=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWF1aaaaa@3FB6@ Yes
(viii) 5x=25 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xnaiaa=HhacaWF9aGaa8Nmaiaa=vda aaa@411F@ x=5 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hEaiaa=1dacaWFTaGaa8xnaaaa@4064@ No
(ix) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=LgacaWF4bGaa8xkaaaa@407F@ m 3 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaWaaSaaaeaaieqacaWFTbaabaGaa83maaaacaWF 9aGaa8Nmaaaa@406C@ m=6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xBaiaa=1dacaWFTaGaa8Nnaaaa@405A@ No
(x) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=HhacaWFPaaaaa@3F95@ m 3 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaWaaSaaaeaaieqacaWFTbaabaGaa83maaaacaWF 9aGaa8Nmaaaa@406C@ m=0 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xBaiaa=1dacaWFWaaaaa@3FA6@ No
(xi) MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8hkaiaa=HhacaWFPbGaa8xkaaaa@407F@ m 3 =2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaWaaSaaaeaaieqacaWFTbaabaGaa83maaaacaWF 9aGaa8Nmaaaa@406C@ m=6 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGcbaacbeGaa8xBaiaa=1dacaWF2aaaaa@3FAC@ Yes

Q.2 Check whether the value given in the brackets is a solutionto the given equation or not:(a) n+5=19(n=1) (b) 7n+5=19(n=2)(c) 7n+5=19(n=2) (d) 4p3=13(p=1)(e) 4p3=13(p=4) (f)4p3=13(p=0)

Ans.

( a )n+5=19 (n=1) Put n=1 in L.H.S to get n+5=1+5=6R.H.S So, the given value in the bracket is not a solution to the given equation. ( b ) 7n+5=19 (n= 2) Put n=2 in L.H.S to get 7n+5=7( 2 )+5=14+5=9R.H.S So, the given value in the bracket is not a solution to the given equation. ( c ) 7n+5 =19 (n=2) Put n=2 in L.H.S to get 7n+5=7( 2 )+5=14+5=19=R.H.S So, the given value in the bracket is a solution to the given equation. ( d ) 4p3=13 (p=1) Put p=1 in L.H.S to get 4p3=4( 1 )3=43=1R.H.S So, the given value in the bracket is not a solution to the given equation. ( e ) 4p3=13 (p= 4) Put p=4 in L.H.S to get 4p3=4( 4 )3=163=19R.H.S So, the given value in the bracket is not a solution to the given equation. ( f ) 4p3=13 (p=0) Put p=0 in L.H.S to get 4p3=4( 0 )3=03=3R.H.S So, the given value in the bracket is not a solution to the given equation. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaadaqadaqaaiaabggaaiaawIcacaGLPaaa caqGUbGaey4kaSIaaeynaiabg2da9iaabgdacaqG5aGaaeiiaiaacI cacaqGUbGaeyypa0JaaeymaiaacMcaaeaacaqGqbGaaeyDaiaabsha caqGGaGaaeOBaiabg2da9iaabgdacaqGGaGaaeyAaiaab6gacaqGGa Gaaeitaiaab6cacaqGibGaaeOlaiaabofacaqGGaGaaeiDaiaab+ga caqGGaGaae4zaiaabwgacaqG0baabaGaaeOBaiaabUcacaqG1aGaey ypa0JaaGymaiabgUcaRiaaiwdacqGH9aqpcaaI2aGaeyiyIKRaaeOu aiaab6cacaqGibGaaeOlaiaabofaaeaacaqGtbGaae4BaiaabYcaca qGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaa bwgacaqGUbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLbGaae iiaiaabMgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG IbGaaeOCaiaabggacaqGJbGaae4AaiaabwgacaqG0bGaaeiiaiaabM gacaqGZbGaaeiiaiaab6gacaqGVbGaaeiDaiaabccacaqGHbGaaeii aiaabohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUb GaaeiiaiaabshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaaqaaiaa bEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXbGaae yDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaqaamaabmaa baGaaeOyaaGaayjkaiaawMcaaiaabccacaqG3aGaaeOBaiabgUcaRi aabwdacqGH9aqpcaqGXaGaaeyoaiaabccacaGGOaGaaeOBaiabg2da 9iabgkHiTiaabccacaqGYaGaaiykaaqaaiaabcfacaqG1bGaaeiDai aabccacaqGUbGaeyypa0JaeyOeI0IaaeOmaiaabccacaqGPbGaaeOB aiaabccacaqGmbGaaeOlaiaabIeacaqGUaGaae4uaiaabccacaqG0b Gaae4BaiaabccacaqGNbGaaeyzaiaabshaaeaacaqG3aGaaeOBaiaa bUcacaqG1aGaeyypa0JaaG4namaabmaabaGaeyOeI0IaaGOmaaGaay jkaiaawMcaaiabgUcaRiaaiwdacqGH9aqpcqGHsislcaaIXaGaaGin aiabgUcaRiaaiwdacqGH9aqpcqGHsislcaaI5aGaeyiyIKRaaeOuai aab6cacaqGibGaaeOlaiaabofaaeaacaqGtbGaae4BaiaabYcacaqG GaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabw gacaqGUbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLbGaaeii aiaabMgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGIb GaaeOCaiaabggacaqGJbGaae4AaiaabwgacaqG0bGaaeiiaiaabMga caqGZbGaaeiiaiaab6gacaqGVbGaaeiDaiaabccacaqGHbGaaeiiai aabohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGa aeiiaiaabshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaaqaaiaabE gacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXbGaaeyD aiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaqaamaabmaaba Gaae4yaaGaayjkaiaawMcaaiaabccacaqG3aGaaeOBaiabgUcaRiaa bwdacaqGGaGaeyypa0JaaeymaiaabMdacaqGGaGaaiikaiaab6gacq GH9aqpcaqGYaGaaiykaaqaaiaabcfacaqG1bGaaeiDaiaabccacaqG UbGaeyypa0JaaeOmaiaabccacaqGPbGaaeOBaiaabccacaqGmbGaae OlaiaabIeacaqGUaGaae4uaiaabccacaqG0bGaae4BaiaabccacaqG NbGaaeyzaiaabshaaeaacaqG3aGaaeOBaiaabUcacaqG1aGaeyypa0 JaaG4namaabmaabaGaaGOmaaGaayjkaiaawMcaaiabgUcaRiaaiwda cqGH9aqpcaaIXaGaaGinaiabgUcaRiaaiwdacqGH9aqpcaaIXaGaaG yoaiabg2da9iaabkfacaqGUaGaaeisaiaab6cacaqGtbaabaGaae4u aiaab+gacaqGSaGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGNb GaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqG2bGaaeyyaiaabYga caqG1bGaaeyzaiaabccacaqGPbGaaeOBaiaabccacaqG0bGaaeiAai aabwgacaqGGaGaaeOyaiaabkhacaqGHbGaae4yaiaabUgacaqGLbGa aeiDaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa bshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaaqaaiaabEgacaqGPb GaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXbGaaeyDaiaabgga caqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaqaamaabmaabaGaaeizaa GaayjkaiaawMcaaiaabccacaqG0aGaaeiCaiabgkHiTiaabodacqGH 9aqpcaqGXaGaae4maiaabccacaGGOaGaaeiCaiabg2da9iaabgdaca GGPaaabaGaaeiuaiaabwhacaqG0bGaaeiiaiaabchacqGH9aqpcaaI XaGaaeiiaiaabMgacaqGUbGaaeiiaiaabYeacaqGUaGaaeisaiaab6 cacaqGtbGaaeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiD aaqaaiaabsdacaqGWbGaeyOeI0IaaG4maiabg2da9iaaisdadaqada qaaiaaigdaaiaawIcacaGLPaaacqGHsislcaaIZaGaeyypa0JaaGin aiabgkHiTiaaiodacqGH9aqpcaaIXaGaeyiyIKRaaeOuaiaab6caca qGibGaaeOlaiaabofaaeaacaqGtbGaae4BaiaabYcacaqGGaGaaeiD aiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUb GaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLbGaaeiiaiaabMga caqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGIbGaaeOCai aabggacaqGJbGaae4AaiaabwgacaqG0bGaaeiiaiaabMgacaqGZbGa aeiiaiaab6gacaqGVbGaaeiDaiaabccacaqGHbGaaeiiaiaabohaca qGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaaeiiaiaa bshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaaqaaiaabEgacaqGPb GaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXbGaaeyDaiaabgga caqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaqaamaabmaabaGaaeyzaa GaayjkaiaawMcaaiaabccacaqG0aGaaeiCaiabgkHiTiaabodacqGH 9aqpcaqGXaGaae4maiaabccacaGGOaGaaeiCaiabg2da9iabgkHiTi aabccacaqG0aGaaiykaaqaaiaabcfacaqG1bGaaeiDaiaabccacaqG WbGaeyypa0JaeyOeI0IaaeinaiaabccacaqGPbGaaeOBaiaabccaca qGmbGaaeOlaiaabIeacaqGUaGaae4uaiaabccacaqG0bGaae4Baiaa bccacaqGNbGaaeyzaiaabshaaeaacaqG0aGaaeiCaiabgkHiTiaaio dacqGH9aqpcaaI0aWaaeWaaeaacqGHsislcaaI0aaacaGLOaGaayzk aaGaeyOeI0IaaG4maiabg2da9iabgkHiTiaaigdacaaI2aGaeyOeI0 IaaG4maiabg2da9iabgkHiTiaaigdacaaI5aGaeyiyIKRaaeOuaiaa b6cacaqGibGaaeOlaiaabofaaeaacaqGtbGaae4BaiaabYcacaqGGa GaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeODaiaabwga caqGUbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLbGaaeiiai aabMgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGIbGa aeOCaiaabggacaqGJbGaae4AaiaabwgacaqG0bGaaeiiaiaabMgaca qGZbGaaeiiaiaab6gacaqGVbGaaeiDaiaabccacaqGHbGaaeiiaiaa bohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaae iiaiaabshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaaqaaiaabEga caqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXbGaaeyDai aabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaqaamaabmaabaGa aeOzaaGaayjkaiaawMcaaiaabccacaqG0aGaaeiCaiabgkHiTiaabo dacqGH9aqpcaqGXaGaae4maiaabccacaGGOaGaaeiCaiabg2da9iaa icdacaGGPaaabaGaaeiuaiaabwhacaqG0bGaaeiiaiaabchacqGH9a qpcaqGWaGaaeiiaiaabMgacaqGUbGaaeiiaiaabYeacaqGUaGaaeis aiaab6cacaqGtbGaaeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLb GaaeiDaaqaaiaabsdacaqGWbGaeyOeI0IaaG4maiabg2da9iaaisda daqadaqaaiaaicdaaiaawIcacaGLPaaacqGHsislcaaIZaGaeyypa0 JaaGimaiabgkHiTiaaiodacqGH9aqpcqGHsislcaaIZaGaeyiyIKRa aeOuaiaab6cacaqGibGaaeOlaiaabofaaeaacaqGtbGaae4BaiaabY cacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaabEgacaqGPbGaaeOD aiaabwgacaqGUbGaaeiiaiaabAhacaqGHbGaaeiBaiaabwhacaqGLb GaaeiiaiaabMgacaqGUbGaaeiiaiaabshacaqGObGaaeyzaiaabcca caqGIbGaaeOCaiaabggacaqGJbGaae4AaiaabwgacaqG0bGaaeiiai aabMgacaqGZbGaaeiiaiaab6gacaqGVbGaaeiDaiaabccacaqGHbGa aeiiaiaabohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gaca qGUbGaaeiiaiaabshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaaqa aiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabwgacaqGXb GaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeOlaaaaaa@FE43@

Q.3 Solve the following equations by trial and error method:(i) 5p+2=17 (ii) 3m14=4

Ans.

( i ) 5p+ 2=17 Put p=1 to L.H.S to get 5( 1 )+2=5+2=7R.H.S Put p=2 to L.H.S to get 5( 2 )+2=10+2=12R.H.S Put p=3 to L.H.S to get 5( 3 )+2=15+2=17=R.H.S Thus, p=3 is a solution to the given equation ( ii ) 3m14=4 Put m=4 in L.H.S to get 3( 4 )14=1214=2R.H.S Put m=5 in L.H.S to get 3( 5 )14=1514=1R.H.S Put m=6 in L.H.S to get 3( 4 )14=1814=4=R.H.S Thus, m=6 is a solution to the given equation MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaadaqadaqaaiaabMgaaiaawIcacaGLPaaa caqGGaGaaeynaiaabchacqGHRaWkcaqGGaGaaeOmaiabg2da9iaabg dacaqG3aaabaGaaeiuaiaabwhacaqG0bGaaeiiaiaabchacqGH9aqp caqGXaGaaeiiaiaabshacaqGVbGaaeiiaiaabYeacaqGUaGaaeisai aab6cacaqGtbGaaeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGa aeiDaaqaaiaabwdadaqadaqaaiaaigdaaiaawIcacaGLPaaacaqGRa GaaeOmaiabg2da9iaabwdacaqGRaGaaeOmaiabg2da9iaabEdacqGH GjsUcaqGsbGaaeOlaiaabIeacaqGUaGaae4uaaqaaiaabcfacaqG1b GaaeiDaiaabccacaqGWbGaeyypa0JaaeOmaiaabccacaqG0bGaae4B aiaabccacaqGmbGaaeOlaiaabIeacaqGUaGaae4uaiaabccacaqG0b Gaae4BaiaabccacaqGNbGaaeyzaiaabshaaeaacaqG1aWaaeWaaeaa caaIYaaacaGLOaGaayzkaaGaae4kaiaabkdacqGH9aqpcaqGXaGaae imaiaabUcacaqGYaGaeyypa0JaaeymaiaabkdacqGHGjsUcaqGsbGa aeOlaiaabIeacaqGUaGaae4uaaqaaiaabcfacaqG1bGaaeiDaiaabc cacaqGWbGaeyypa0Jaae4maiaabccacaqG0bGaae4BaiaabccacaqG mbGaaeOlaiaabIeacaqGUaGaae4uaiaabccacaqG0bGaae4Baiaabc cacaqGNbGaaeyzaiaabshaaeaacaqG1aWaaeWaaeaacaaIZaaacaGL OaGaayzkaaGaae4kaiaabkdacqGH9aqpcaqGXaGaaeynaiaabUcaca qGYaGaeyypa0JaaeymaiaabEdacqGH9aqpcaqGsbGaaeOlaiaabIea caqGUaGaae4uaaqaaiaabsfacaqGObGaaeyDaiaabohacaqGSaGaae iiaiaabchacqGH9aqpcaqGZaGaaeiiaiaabMgacaqGZbGaaeiiaiaa bggacaqGGaGaae4Caiaab+gacaqGSbGaaeyDaiaabshacaqGPbGaae 4Baiaab6gacaqGGaGaaeiDaiaab+gacaqGGaGaaeiDaiaabIgacaqG LbGaaeiiaiaabEgacaqGPbGaaeODaiaabwgacaqGUbGaaeiiaiaabw gacaqGXbGaaeyDaiaabggacaqG0bGaaeyAaiaab+gacaqGUbGaaeii aaqaamaabmaabaGaaeyAaiaabMgaaiaawIcacaGLPaaacaqGGaGaae 4maiaab2gacqGHsislcaqGXaGaaeinaiabg2da9iaabsdaaeaacaqG qbGaaeyDaiaabshacaqGGaGaaeyBaiabg2da9iaabsdacaqGGaGaae yAaiaab6gacaqGGaGaaeitaiaab6cacaqGibGaaeOlaiaabofacaqG GaGaaeiDaiaab+gacaqGGaGaae4zaiaabwgacaqG0baabaGaae4mam aabmaabaGaaGinaaGaayjkaiaawMcaaiabgkHiTiaaigdacaaI0aGa eyypa0JaaGymaiaaikdacqGHsislcaaIXaGaaGinaiabg2da9iabgk HiTiaaikdacqGHGjsUcaqGsbGaaeOlaiaabIeacaqGUaGaae4uaaqa aiaabcfacaqG1bGaaeiDaiaabccacaqGTbGaeyypa0Jaaeynaiaabc cacaqGPbGaaeOBaiaabccacaqGmbGaaeOlaiaabIeacaqGUaGaae4u aiaabccacaqG0bGaae4BaiaabccacaqGNbGaaeyzaiaabshaaeaaca qGZaWaaeWaaeaacaaI1aaacaGLOaGaayzkaaGaeyOeI0IaaGymaiaa isdacqGH9aqpcaaIXaGaaGynaiabgkHiTiaaigdacaaI0aGaeyypa0 JaeyOeI0IaaGymaiabgcMi5kaabkfacaqGUaGaaeisaiaab6cacaqG tbaabaGaaeiuaiaabwhacaqG0bGaaeiiaiaab2gacqGH9aqpcaqG2a GaaeiiaiaabMgacaqGUbGaaeiiaiaabYeacaqGUaGaaeisaiaab6ca caqGtbGaaeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaa qaaiaabodadaqadaqaaiaaisdaaiaawIcacaGLPaaacqGHsislcaaI XaGaaGinaiabg2da9iaaigdacaaI4aGaeyOeI0IaaGymaiaaisdacq GH9aqpcaaI0aGaeyypa0JaaeOuaiaab6cacaqGibGaaeOlaiaabofa aeaacaqGubGaaeiAaiaabwhacaqGZbGaaeilaiaabccacaqGTbGaey ypa0JaaeOnaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeiiaiaa bohacaqGVbGaaeiBaiaabwhacaqG0bGaaeyAaiaab+gacaqGUbGaae iiaiaabshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqG NbGaaeyAaiaabAhacaqGLbGaaeOBaiaabccacaqGLbGaaeyCaiaabw hacaqGHbGaaeiDaiaabMgacaqGVbGaaeOBaaaaaa@76BD@

Q.4 Write equations for the following statements:(i) The sum of numbers x and 4 is 9.(ii) The difference between y and 2 is 8.(iii) Ten times a is 70.(iv) The number b divided by 5 gives 6.(v) Three fourth of t is 15.(vi) Seven times m plus 7 gets you 77.(vii) One fourth of a number minus 4 gives 4.(viii) If you take away 6 from 6 times y, you get 60.(ix) If you add 3 toone third of z, you get 30.

Ans.

( i )x+4=9 (ii)y2=8 (iii)10a=70 (iv) b 5 =6 (v) 3 4 t=15 ( vi )7m+7=77 ( vii ) x 4 4=4 ( viii )6y6=60 ( ix ) z 3 +3=30 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaadaqadaqaaiaabMgaaiaawIcacaGLPaaa caaMe8UaamiEaiabgUcaRiaaisdacqGH9aqpcaaI5aaabaGaaiikai aabMgacaqGPbGaaeykaiaaysW7caWG5bGaeyOeI0IaaGOmaiabg2da 9iaaiIdaaeaacaqGOaGaaeyAaiaabMgacaqGPbGaaeykaiaaysW7ca aIXaGaaGimaiaadggacqGH9aqpcaaI3aGaaGimaaqaaiaabIcacaqG PbGaaeODaiaabMcacaaMe8+aaSaaaeaacaWGIbaabaGaaGynaaaacq GH9aqpcaaI2aaabaGaaeikaiaabAhacaqGPaGaaGjbVpaalaaabaGa aG4maaqaaiaaisdaaaGaamiDaiabg2da9iaaigdacaaI1aaabaWaae WaaeaacaqG2bGaaeyAaaGaayjkaiaawMcaaiaaysW7caaI3aGaamyB aiabgUcaRiaaiEdacqGH9aqpcaaI3aGaaG4naaqaamaabmaabaGaae ODaiaabMgacaqGPbaacaGLOaGaayzkaaGaaGjbVpaalaaabaGaamiE aaqaaiaaisdaaaGaeyOeI0IaaGinaiabg2da9iaaisdaaeaadaqada qaaiaabAhacaqGPbGaaeyAaiaabMgaaiaawIcacaGLPaaacaaMe8Ua aGOnaiaadMhacqGHsislcaaI2aGaeyypa0JaaGOnaiaaicdaaeaada qadaqaaiaabMgacaqG4baacaGLOaGaayzkaaGaaGjbVpaalaaabaGa amOEaaqaaiaaiodaaaGaey4kaSIaaG4maiabg2da9iaaiodacaaIWa aaaaa@9828@

Q.5

Write the following equations in statement forms:(i)    p+4=15(ii)   m7=3(iii)   2m=7(iv) m5=3(v)35m=6(vi) 3p+4=25(vii) 4p2=18(viii) p2+2=8

Ans.

(i) The sum of p and 4 is 15. (ii) 7 subtracted from m is 3. (iii) Twice of a number m is 7. (iv) One-fifth of m is 3. (v) Three-fifth of m is 6. (vi) Three times of a number p, when add to 4 gives 25. (vii) When 2 is subtracted from four times of a number p, it gives 18. (viii) When 2 is added to half of a number p, it gives 8. MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaGGOaGaamyAaiaacMcacaqGGaGaaeiv aiaabIgacaqGLbGaaeiiaiaabohacaqG1bGaaeyBaiaabccacaqGVb GaaeOzaiaabccacaqGWbGaaeiiaiaabggacaqGUbGaaeizaiaabcca caqG0aGaaeiiaiaabMgacaqGZbGaaeiiaiaabgdacaqG1aGaaeOlaa qaaiaabIcacaqGPbGaaeyAaiaabMcacaqGGaGaae4naiaabccacaqG ZbGaaeyDaiaabkgacaqG0bGaaeOCaiaabggacaqGJbGaaeiDaiaabw gacaqGKbGaaeiiaiaabAgacaqGYbGaae4Baiaab2gacaqGGaGaaeyB aiaabccacaqGPbGaae4CaiaabccacaqGZaGaaeOlaaqaaiaabIcaca qGPbGaaeyAaiaabMgacaqGPaGaaeiiaiaabsfacaqG3bGaaeyAaiaa bogacaqGLbGaaeiiaiaab+gacaqGMbGaaeiiaiaabggacaqGGaGaae OBaiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaeiiaiaab2gacaqG GaGaaeyAaiaabohacaqGGaGaae4naiaab6caaeaacaqGOaGaaeyAai aabAhacaqGPaGaaeiiaiaab+eacaqGUbGaaeyzaiaab2cacaqGMbGa aeyAaiaabAgacaqG0bGaaeiAaiaabccacaqGVbGaaeOzaiaabccaca qGTbGaaeiiaiaabMgacaqGZbGaaeiiaiaabodacaqGUaaabaGaaeik aiaabAhacaqGPaGaaeiiaiaabsfacaqGObGaaeOCaiaabwgacaqGLb GaaeylaiaabAgacaqGPbGaaeOzaiaabshacaqGObGaaeiiaiaab+ga caqGMbGaaeiiaiaab2gacaqGGaGaaeyAaiaabohacaqGGaGaaeOnai aab6caaeaacaqGOaGaaeODaiaabMgacaqGPaGaaeiiaiaabsfacaqG ObGaaeOCaiaabwgacaqGLbGaaeiiaiaabshacaqGPbGaaeyBaiaabw gacaqGZbGaaeiiaiaab+gacaqGMbGaaeiiaiaabggacaqGGaGaaeOB aiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaeiiaiaabchacaqGSa GaaeiiaiaabEhacaqGObGaaeyzaiaab6gacaqGGaGaaeyyaiaabsga caqGKbGaaeiiaiaabshacaqGVbGaaeiiaiaabsdacaqGGaGaae4zai aabMgacaqG2bGaaeyzaiaabohacaqGGaGaaeOmaiaabwdacaqGUaaa baGaaeikaiaabAhacaqGPbGaaeyAaiaabMcacaqGGaGaae4vaiaabI gacaqGLbGaaeOBaiaabccacaqGYaGaaeiiaiaabMgacaqGZbGaaeii aiaabohacaqG1bGaaeOyaiaabshacaqGYbGaaeyyaiaabogacaqG0b GaaeyzaiaabsgacaqGGaGaaeOzaiaabkhacaqGVbGaaeyBaiaabcca caqGMbGaae4BaiaabwhacaqGYbGaaeiiaiaabshacaqGPbGaaeyBai aabwgacaqGZbGaaeiiaiaab+gacaqGMbGaaeiiaiaabggacaqGGaGa aeOBaiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaeiiaiaabchaca qGSaaabaGaaGjbVlaaysW7caaMe8UaaGjbVlaaysW7caaMe8UaaeyA aiaabshacaqGGaGaae4zaiaabMgacaqG2bGaaeyzaiaabohacaqGGa GaaeymaiaabIdacaqGUaaabaGaaeikaiaabAhacaqGPbGaaeyAaiaa bMgacaqGPaGaaeiiaiaabEfacaqGObGaaeyzaiaab6gacaqGGaGaae OmaiaabccacaqGPbGaae4CaiaabccacaqGHbGaaeizaiaabsgacaqG LbGaaeizaiaabccacaqG0bGaae4BaiaabccacaqGObGaaeyyaiaabY gacaqGMbGaaeiiaiaab+gacaqGMbGaaeiiaiaabggacaqGGaGaaeOB aiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaeiiaiaabchacaqGSa GaaeiiaiaabMgacaqG0bGaaeiiaiaabEgacaqGPbGaaeODaiaabwga caqGZbGaaeiiaiaabIdacaqGUaaaaaa@52BE@

Q.6 Set up an equation in the following cases:i Irfan says that he has 7 marbles more than fivetimes the marbles Parmit has. Irfan has 37 marbles.(Take m to be the number of Parmits marbles.(ii) Laxmis father is 49 years old. He is 4 years older thanthree times Laxmis age.(Take Laxmis age to be y years.)iiiThe teacher tells the class that the highest marksobtained by a student in her class is twice the lowestmarks plus 7.The highest score is 87.(Take the lowest score to be l).iv In an isosceles triangle, the vertex angle is twice eitherbase angle.(Let the base angle be b in degrees. Rememberthat the sum of angles of a triangle is 180​ degrees).

Ans.

(i) Let Parmit has m marbles. Then, according to the question, we have 5×Number of marbles Parmit has +7=Number of marbles Irfan has 5×m+7=37 So, we get 5m+7=37 (ii) Let Laxmi be y years old Then, according to the question, we have 3×Laxmi’s age+4=Laxmi’s father age 3×y+4=49 3y+4=49 (iii) Let the lowest marks be l. Then, according to the question, we have 2×lowest marks +7=Highest marks 2×l+7=87 2l+7=87 (iv) An isoceles triangle has two angles equal. Let the base angle be b. Then, according to the question, we have b+b+2b=180° 4b=180° MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGOaGaaeyAaiaabMcacaqGGaGaaeit aiaabwgacaqG0bGaaeiiaiaabcfacaqGHbGaaeOCaiaab2gacaqGPb GaaeiDaiaabccacaqGObGaaeyyaiaabohacaqGGaGaamyBaiaabcca caqGTbGaaeyyaiaabkhacaqGIbGaaeiBaiaabwgacaqGZbGaaeOlaa qaaiaabsfacaqGObGaaeyzaiaab6gacaqGSaGaaeiiaiaabggacaqG JbGaae4yaiaab+gacaqGYbGaaeizaiaabMgacaqGUbGaae4zaiaabc cacaqG0bGaae4BaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeyC aiaabwhacaqGLbGaae4CaiaabshacaqGPbGaae4Baiaab6gacaqGSa GaaeiiaiaabEhacaqGLbGaaeiiaiaabIgacaqGHbGaaeODaiaabwga aeaacaqG1aGaey41aqRaaeOtaiaabwhacaqGTbGaaeOyaiaabwgaca qGYbGaaeiiaiaab+gacaqGMbGaaeiiaiaab2gacaqGHbGaaeOCaiaa bkgacaqGSbGaaeyzaiaabohacaqGGaGaaeiuaiaabggacaqGYbGaae yBaiaabMgacaqG0bGaaeiiaiaabIgacaqGHbGaae4CaiaabccacaqG RaGaae4naiabg2da9iaab6eacaqG1bGaaeyBaiaabkgacaqGLbGaae OCaiaabccacaqGVbGaaeOzaiaabccacaqGTbGaaeyyaiaabkhacaqG IbGaaeiBaiaabwgacaqGZbaabaGaaCzcaiaaxMaacaWLjaGaaCzcai aaxMaacaWLjaGaaCzcaiaaxMaacaWLjaGaaeysaiaabkhacaqGMbGa aeyyaiaab6gacaqGGaGaaeiAaiaabggacaqGZbaabaGaaCzcaiaaxM aacaWLjaGaaCzcaiaaxMaacaWLjaGaaGjbVlaaysW7caqG1aGaey41 aqRaamyBaiabgUcaRiaabEdacqGH9aqpcaqGZaGaae4naaqaaiaabo facaqGVbGaaeilaiaabccacaqG3bGaaeyzaiaabccacaqGNbGaaeyz aiaabshaaeaacaWLjaGaaCzcaiaaxMaacaWLjaGaaCzcaiaaxMaaca aMe8UaaGjbVlaaysW7daqjEaqaaiaabwdacaWGTbGaey4kaSIaae4n aiabg2da9iaabodacaqG3aaaaaqaaiaabIcacaqGPbGaaeyAaiaabM cacaqGGaGaaeitaiaabwgacaqG0bGaaeiiaiaabYeacaqGHbGaaeiE aiaab2gacaqGPbGaaeiiaiaabkgacaqGLbGaaeiiaiaadMhacaqGGa GaaeyEaiaabwgacaqGHbGaaeOCaiaabohacaqGGaGaae4BaiaabYga caqGKbaabaGaaeivaiaabIgacaqGLbGaaeOBaiaabYcacaqGGaGaae yyaiaabogacaqGJbGaae4BaiaabkhacaqGKbGaaeyAaiaab6gacaqG NbGaaeiiaiaabshacaqGVbGaaeiiaiaabshacaqGObGaaeyzaiaabc cacaqGXbGaaeyDaiaabwgacaqGZbGaaeiDaiaabMgacaqGVbGaaeOB aiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaaeiAaiaabggacaqG2b GaaeyzaaqaaiaabodacqGHxdaTcaqGmbGaaeyyaiaabIhacaqGTbGa aeyAaiaabEcacaqGZbGaaeiiaiaabggacaqGNbGaaeyzaiabgUcaRi aabsdacqGH9aqpcaqGmbGaaeyyaiaabIhacaqGTbGaaeyAaiaabEca caqGZbGaaeiiaiaabAgacaqGHbGaaeiDaiaabIgacaqGLbGaaeOCai aabccacaqGHbGaae4zaiaabwgaaeaacaqGZaGaey41aqRaamyEaiaa bUcacaqG0aGaeyypa0JaaeinaiaabMdaaeaadaqjEaqaaiaabodaca WG5bGaey4kaSIaaeinaiabg2da9iaabsdacaqG5aaaaaqaaiaabIca caqGPbGaaeyAaiaabMgacaqGPaGaaeiiaiaabYeacaqGLbGaaeiDai aabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeiBaiaab+gacaqG3bGa aeyzaiaabohacaqG0bGaaeiiaiaab2gacaqGHbGaaeOCaiaabUgaca qGZbGaaeiiaiaabkgacaqGLbGaaeiiaiaadYgacaqGUaaabaGaaeiv aiaabIgacaqGLbGaaeOBaiaabYcacaqGGaGaaeyyaiaabogacaqGJb Gaae4BaiaabkhacaqGKbGaaeyAaiaab6gacaqGNbGaaeiiaiaabsha caqGVbGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGXbGaaeyDai aabwgacaqGZbGaaeiDaiaabMgacaqGVbGaaeOBaiaabYcacaqGGaGa ae4DaiaabwgacaqGGaGaaeiAaiaabggacaqG2bGaaeyzaaqaaiaaik dacqGHxdaTcaqGSbGaae4BaiaabEhacaqGLbGaae4CaiaabshacaqG GaGaaeyBaiaabggacaqGYbGaae4AaiaabohacaqGGaGaey4kaSIaae 4naiabg2da9iaabIeacaqGPbGaae4zaiaabIgacaqGLbGaae4Caiaa bshacaqGGaGaaeyBaiaabggacaqGYbGaae4AaiaabohaaeaacaqGYa Gaey41aqRaamiBaiabgUcaRiaabEdacqGH9aqpcaqG4aGaae4naaqa amaaL4babaGaaGOmaiaadYgacqGHRaWkcaaI3aGaeyypa0JaaGioai aaiEdaaaaabaGaaeikaiaabMgacaqG2bGaaeykaiaabccacaqGbbGa aeOBaiaabccacaqGPbGaae4Caiaab+gacaqGJbGaaeyzaiaabYgaca qGLbGaae4CaiaabccacaqG0bGaaeOCaiaabMgacaqGHbGaaeOBaiaa bEgacaqGSbGaaeyzaiaabccacaqGObGaaeyyaiaabohacaqGGaGaae iDaiaabEhacaqGVbGaaeiiaiaabggacaqGUbGaae4zaiaabYgacaqG LbGaae4CaiaabccacaqGLbGaaeyCaiaabwhacaqGHbGaaeiBaiaab6 caaeaacaqGmbGaaeyzaiaabshacaqGGaGaaeiDaiaabIgacaqGLbGa aeiiaiaabkgacaqGHbGaae4CaiaabwgacaqGGaGaaeyyaiaab6gaca qGNbGaaeiBaiaabwgacaqGGaGaaeOyaiaabwgacaqGGaGaamOyaiaa b6caaeaacaqGubGaaeiAaiaabwgacaqGUbGaaeilaiaabccacaqGHb Gaae4yaiaabogacaqGVbGaaeOCaiaabsgacaqGPbGaaeOBaiaabEga caqGGaGaaeiDaiaab+gacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiai aabghacaqG1bGaaeyzaiaabohacaqG0bGaaeyAaiaab+gacaqGUbGa aeilaiaabccacaqG3bGaaeyzaiaabccacaqGObGaaeyyaiaabAhaca qGLbaabaGaamOyaiabgUcaRiaadkgacqGHRaWkcaWGYaGaamOyaiab g2da9iaabgdacaqG4aGaaeimaiabgclaWcqaamaaL4babaGaaGinai aadkgacqGH9aqpcaaIXaGaaGioaiaaicdacqGHWcaSaaaaaaa@1B6D@

Q.7 Give first the step you will use to separate the variableand then solve the equation:(a) x1=0 (b) x+1=0 (c) x1=5 (d) x+6=2(e) y4=7 (f) y4=4 (g) y+4=4 (h) y+4=4

Ans.

( a )x1=0 Add 1 to both sides to get x=1 ( b )x+1=0 Subtract 1 from both sides to get x=1 ( c )x1=5 Add 1 to both sides to get x=6 ( d )x+ 6 = 2 Subtract 6 from both sides to get x=4 ( e )y 4= 7 Add 4 to both sides to get y=3 ( f )y4=4 Add 4 to both sides to get y=0 ( g )y+4=4 Subtract 4 from both sides to get y=0 ( h )y+4= 4 Subtract 4 from both sides to get y=8 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaadaqadaqaaiaabggaaiaawIcacaGLPaaa caWG4bGaeyOeI0Iaaeymaiabg2da9iaaicdaaeaacaqGbbGaaeizai aabsgacaqGGaGaaeymaiaabccacaqG0bGaae4BaiaabccacaqGIbGa ae4BaiaabshacaqGObGaaeiiaiaabohacaqGPbGaaeizaiaabwgaca qGZbGaaeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaaqa amaaL4babaGaamiEaiabg2da9iaaigdaaaaabaWaaeWaaeaacaqGIb aacaGLOaGaayzkaaGaaeiEaiabgUcaRiaabgdacqGH9aqpcaaIWaaa baGaae4uaiaabwhacaqGIbGaaeiDaiaabkhacaqGHbGaae4yaiaabs hacaqGGaGaaeymaiaabccacaqGMbGaaeOCaiaab+gacaqGTbGaaeii aiaabkgacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKb GaaeyzaiaabohacaqGGaGaaeiDaiaab+gacaqGGaGaae4zaiaabwga caqG0baabaWaauIhaeaacaqG4bGaeyypa0JaeyOeI0Iaaeymaaaaae aadaqadaqaaiaabogaaiaawIcacaGLPaaacaqG4bGaeyOeI0Iaaeym aiabg2da9iaabwdaaeaacaqGbbGaaeizaiaabsgacaqGGaGaaeymai aabccacaqG0bGaae4BaiaabccacaqGIbGaae4BaiaabshacaqGObGa aeiiaiaabohacaqGPbGaaeizaiaabwgacaqGZbGaaeiiaiaabshaca qGVbGaaeiiaiaabEgacaqGLbGaaeiDaaqaamaaL4babaGaamiEaiab g2da9iaaiAdaaaaabaWaaeWaaeaacaqGKbaacaGLOaGaayzkaaGaae iEaiabgUcaRiaabccacaqG2aGaaeiiaiabg2da9iaabccacaqGYaaa baGaae4uaiaabwhacaqGIbGaaeiDaiaabkhacaqGHbGaae4yaiaabs hacaqGGaGaaeOnaiaabccacaqGMbGaaeOCaiaab+gacaqGTbGaaeii aiaabkgacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKb GaaeyzaiaabohacaqGGaGaaeiDaiaab+gacaqGGaGaae4zaiaabwga caqG0baabaWaauIhaeaacaqG4bGaeyypa0JaeyOeI0Iaaeinaaaaae aadaqadaqaaiaabwgaaiaawIcacaGLPaaacaqG5bGaeyOeI0Iaaeii aiaabsdacqGH9aqpcqGHsislcaqGGaGaae4naaqaaiaabgeacaqGKb GaaeizaiaabccacaqG0aGaaeiiaiaabshacaqGVbGaaeiiaiaabkga caqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKbGaaeyzai aabohacaqGGaGaaeiDaiaab+gacaqGGaGaae4zaiaabwgacaqG0baa baWaauIhaeaacaqG5bGaeyypa0JaeyOeI0IaaG4maaaaaeaadaqada qaaiaabAgaaiaawIcacaGLPaaacaqG5bGaeyOeI0Iaaeinaiabg2da 9iaabsdaaeaacaqGbbGaaeizaiaabsgacaqGGaGaaeinaiaabccaca qG0bGaae4BaiaabccacaqGIbGaae4BaiaabshacaqGObGaaeiiaiaa bohacaqGPbGaaeizaiaabwgacaqGZbGaaeiiaiaabshacaqGVbGaae iiaiaabEgacaqGLbGaaeiDaaqaamaaL4babaGaamyEaiabg2da9iaa icdaaaaabaWaaeWaaeaacaqGNbaacaGLOaGaayzkaaGaaeyEaiabgU caRiaabsdacqGH9aqpcaqG0aaabaGaae4uaiaabwhacaqGIbGaaeiD aiaabkhacaqGHbGaae4yaiaabshacaqGGaGaaeinaiaabccacaqGMb GaaeOCaiaab+gacaqGTbGaaeiiaiaabkgacaqGVbGaaeiDaiaabIga caqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabohacaqGGaGaaeiDai aab+gacaqGGaGaae4zaiaabwgacaqG0baabaWaauIhaeaacaWG5bGa eyypa0JaaGimaaaaaeaadaqadaqaaiaabIgaaiaawIcacaGLPaaaca qG5bGaey4kaSIaaeinaiabg2da9iabgkHiTiaabccacaqG0aaabaGa ae4uaiaabwhacaqGIbGaaeiDaiaabkhacaqGHbGaae4yaiaabshaca qGGaGaaeinaiaabccacaqGMbGaaeOCaiaab+gacaqGTbGaaeiiaiaa bkgacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKbGaae yzaiaabohacaqGGaGaaeiDaiaab+gacaqGGaGaae4zaiaabwgacaqG 0baabaWaauIhaeaacaWG5bGaeyypa0JaeyOeI0IaaGioaaaaaaaa@605F@

Q.8 Give first the step you will use to separate the variableand then solve the equation:(a) 3l=42 (b)b2=6 (c)p7=4 (d)4x=25(e) 8y=36 (f)z3=54 (g)a5=715 (h)2t=10

Ans.

(a) 3l=42Divide both sides by 3 to getl=423=14(b) b2=6Multiply both sides by 3 to getb=12(c)p7=4Multiply both sides by 7 to getp=28(d)4x=25Divide both sides by 4 to getx=254(e)8y=36Divide both sides by 8 to gety=368=92(f)z3=54Multiply both sides by 3 to getz=154(g)a5=715Multiply both sides by 5 to geta=7×515=7×53×5=73(h)2t=10Divide both sides by 2 to gett=102=5×22=5

Q.9 Give the steps you will use to separate the variable andthen solve the equation:(a) 3n-2 = 46 (b) 5m+7 = 17(c) 20p3 = 40 (d) 3p10 = 6

Ans.

(a) 3n2=46 Add 2 to both sides to get 3n=48 Now, divide both sides by 3 to get n=16 (b) 5m+7=17 Subtract 7 from both sides to get 5m=10 Now, divide both sides by 5 to get m=2 (c) 20p 3 =40 Multiply both sides by 3 to get 20p=120 Now divide both sides by 20, to get p= 120 20 = 20 ×3 20 Thus, p=3 (d) 3p 10 =6 Multiply both sides by 10 to get 3p=60 Now divide both sides by 3, to get p= 60 3 = 20× 3 3 Thus, p=20 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGOaGaaeyyaiaabMcacaqGGaGaaG4m aiaad6gacqGHsislcaaIYaGaeyypa0JaaGinaiaaiAdaaeaacaqGbb GaaeizaiaabsgacaqGGaGaaeOmaiaabccacaqG0bGaae4Baiaabcca caqGIbGaae4BaiaabshacaqGObGaaeiiaiaabohacaqGPbGaaeizai aabwgacaqGZbGaaeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGa aeiDaaqaaiaaiodacaWGUbGaeyypa0JaaGinaiaaiIdaaeaacaqGob Gaae4BaiaabEhacaqGSaGaaeiiaiaabsgacaqGPbGaaeODaiaabMga caqGKbGaaeyzaiaabccacaqGIbGaae4BaiaabshacaqGObGaaeiiai aabohacaqGPbGaaeizaiaabwgacaqGZbGaaeiiaiaabkgacaqG5bGa aeiiaiaabodacaqGGaGaaeiDaiaab+gacaqGGaGaae4zaiaabwgaca qG0baabaWaauIhaeaacaWGUbGaeyypa0JaaGymaiaaiAdaaaaabaGa aeikaiaabkgacaqGPaGaaeiiaiaaiwdacaWGTbGaey4kaSIaaG4nai abg2da9iaaigdacaaI3aaabaGaae4uaiaabwhacaqGIbGaaeiDaiaa bkhacaqGHbGaae4yaiaabshacaqGGaGaae4naiaabccacaqGMbGaae OCaiaab+gacaqGTbGaaeiiaiaabkgacaqGVbGaaeiDaiaabIgacaqG GaGaae4CaiaabMgacaqGKbGaaeyzaiaabohacaqGGaGaaeiDaiaab+ gacaqGGaGaae4zaiaabwgacaqG0baabaGaaGynaiaad2gacqGH9aqp caaIXaGaaGimaaqaaiaab6eacaqGVbGaae4DaiaabYcacaqGGaGaae izaiaabMgacaqG2bGaaeyAaiaabsgacaqGLbGaaeiiaiaabkgacaqG VbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabo hacaqGGaGaaeOyaiaabMhacaqGGaGaaeynaiaabccacaqG0bGaae4B aiaabccacaqGNbGaaeyzaiaabshaaeaadaqjEaqaaiaad2gacqGH9a qpcaaIYaaaaaqaaiaabIcacaqGJbGaaeykaiaabccadaWcaaqaaiaa ikdacaaIWaGaamiCaaqaaiaaiodaaaGaeyypa0JaaGinaiaaicdaae aacaqGnbGaaeyDaiaabYgacaqG0bGaaeyAaiaabchacaqGSbGaaeyE aiaabccacaqGIbGaae4BaiaabshacaqGObGaaeiiaiaabohacaqGPb GaaeizaiaabwgacaqGZbGaaeiiaiaabkgacaqG5bGaaeiiaiaaboda caqGGaGaaeiDaiaab+gacaqGGaGaae4zaiaabwgacaqG0baabaGaaG OmaiaaicdacaWGWbGaeyypa0JaaGymaiaaikdacaaIWaaabaGaaeOt aiaab+gacaqG3bGaaeiiaiaabsgacaqGPbGaaeODaiaabMgacaqGKb GaaeyzaiaabccacaqGIbGaae4BaiaabshacaqGObGaaeiiaiaaboha caqGPbGaaeizaiaabwgacaqGZbGaaeiiaiaabkgacaqG5bGaaeiiai aabkdacaqGWaGaaeilaiaabccacaqG0bGaae4BaiaabccacaqGNbGa aeyzaiaabshaaeaacaWGWbGaeyypa0ZaaSaaaeaacaaIXaGaaGOmai aaicdaaeaacaaIYaGaaGimaaaacqGH9aqpdaWcaaqaamaaKiaabaGa aGOmaiaaicdaaaGaey41aqRaaG4maaqaamaaKiaabaGaaGOmaiaaic daaaaaaaqaaiaabsfacaqGObGaaeyDaiaabohacaGGSaGaaGjbVpaa L4babaGaamiCaiabg2da9iaaiodaaaaabaGaaeikaiaabsgacaqGPa GaaGjbVpaalaaabaGaaG4maiaadchaaeaacaaIXaGaaGimaaaacqGH 9aqpcaaI2aaabaGaaeytaiaabwhacaqGSbGaaeiDaiaabMgacaqGWb GaaeiBaiaabMhacaqGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaabcca caqGZbGaaeyAaiaabsgacaqGLbGaae4CaiaabccacaqGIbGaaeyEai aabccacaqGXaGaaeimaiaabccacaqG0bGaae4BaiaabccacaqGNbGa aeyzaiaabshaaeaacaaIZaGaamiCaiabg2da9iaaiAdacaaIWaaaba GaaeOtaiaab+gacaqG3bGaaeiiaiaabsgacaqGPbGaaeODaiaabMga caqGKbGaaeyzaiaabccacaqGIbGaae4BaiaabshacaqGObGaaeiiai aabohacaqGPbGaaeizaiaabwgacaqGZbGaaeiiaiaabkgacaqG5bGa aeiiaiaabodacaqGSaGaaeiiaiaabshacaqGVbGaaeiiaiaabEgaca qGLbGaaeiDaaqaaiaadchacqGH9aqpdaWcaaqaaiaaiAdacaaIWaaa baGaaG4maaaacqGH9aqpdaWcaaqaaiaaikdacaaIWaGaey41aqRabG 4mayaawaaabaGabG4mayaawaaaaaqaaiaabsfacaqGObGaaeyDaiaa bohacaGGSaGaaGjbVpaaL4babaGaamiCaiabg2da9iaaikdacaaIWa aaaaaaaa@817B@

Q.10 Solve the following equations:(a)10p=100(b)10p+10=100(c)p4=5(d)p3=5(e)3p4=6(f)3s=9(g)3s+12=0(h)3s=0(i)2q=6(j)2q6=0(k)2q+6=0(l)2q+6=12

Ans.

(a) 10p=100 p= 100 10 = 10 (b) 10p+10=100 10p=90 p= 90 10 = 9 (c) p 4 =5 p=5×4= 20 (d) p 3 =5 p=5×3= 15 (e) 3p 4 =6 3p=6×4=24 p= 24 3 = 8 (f)3s=9 s= 9 3 = 3 (g)3s+12=0 3s=12 s= 12 3 = 4 (h)3s=0 s= 0 3 = 0 (i)2q=6 q= 6 2 = 3 (j)2q6=0 2q=6 q= 6 2 = 3 (k)2q+6=0 2q=6 q= 6 2 = 3 (l)2q+6=12 2q=126 2q=6 q= 6 3 = 2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaGGOaGaamyyaiaacMcacaqGGaGaaGym aiaaicdacaWGWbGaeyypa0JaaGymaiaaicdacaaIWaaabaGaamiCai abg2da9maalaaabaGaaGymaiaaicdacaaIWaaabaGaaGymaiaaicda aaGaeyypa0ZaauIhaeaacaaIXaGaaGimaaaaaeaacaqGOaGaaeOyai aabMcacaqGGaGaaGymaiaaicdacaWGWbGaey4kaSIaaGymaiaaicda cqGH9aqpcaaIXaGaaGimaiaaicdaaeaacaaIXaGaaGimaiaadchacq GH9aqpcaaI5aGaaGimaaqaaiaadchacqGH9aqpdaWcaaqaaiaaiMda caaIWaaabaGaaGymaiaaicdaaaGaeyypa0ZaauIhaeaacaaI5aaaaa qaaiaabIcacaqGJbGaaeykaiaabccadaWcaaqaaiaadchaaeaacaaI 0aaaaiabg2da9iaaiwdaaeaacaWGWbGaeyypa0JaaGynaiabgEna0k aaisdacqGH9aqpdaqjEaqaaiaaikdacaaIWaaaaaqaaiaabIcacaqG KbGaaeykaiaabccadaWcaaqaaiaadchaaeaacaaIZaaaaiabg2da9i aaiwdaaeaacaWGWbGaeyypa0JaaGynaiabgEna0kaaiodacqGH9aqp daqjEaqaaiaaigdacaaI1aaaaaqaaiaacIcacaWGLbGaaiykaiaabc cadaWcaaqaaiaaiodacaWGWbaabaGaaGinaaaacqGH9aqpcaaI2aaa baGaaG4maiaadchacqGH9aqpcaaI2aGaey41aqRaaGinaiabg2da9i aaikdacaaI0aaabaGaamiCaiabg2da9maalaaabaGaaGOmaiaaisda aeaacaaIZaaaaiabg2da9maaL4babaGaaGioaaaaaeaacaGGOaGaam OzaiaacMcacaaMe8UaaG4maiaadohacqGH9aqpcqGHsislcaaI5aaa baGaam4Caiabg2da9maalaaabaGaeyOeI0IaaGyoaaqaaiaaiodaaa Gaeyypa0ZaauIhaeaacqGHsislcaaIZaaaaaqaaiaacIcacaWGNbGa aiykaiaaysW7caaIZaGaam4CaiabgUcaRiaaigdacaaIYaGaeyypa0 JaaGimaaqaaiaaiodacaWGZbGaeyypa0JaeyOeI0IaaGymaiaaikda aeaacaWGZbGaeyypa0ZaaSaaaeaacqGHsislcaaIXaGaaGOmaaqaai aaiodaaaGaeyypa0ZaauIhaeaacqGHsislcaaI0aaaaaqaaiaacIca caWGObGaaiykaiaaysW7caaIZaGaam4Caiabg2da9iaaicdaaeaaca WGZbGaeyypa0ZaaSaaaeaacaaIWaaabaGaaG4maaaacqGH9aqpdaqj EaqaaiaaicdaaaaabaGaaiikaiaadMgacaGGPaGaaGjbVlaaikdaca WGXbGaeyypa0JaaGOnaaqaaiaadghacqGH9aqpdaWcaaqaaiaaiAda aeaacaaIYaaaaiabg2da9maaL4babaGaaG4maaaaaeaacaGGOaGaam OAaiaacMcacaaMe8UaaGOmaiaadghacqGHsislcaaI2aGaeyypa0Ja aGimaaqaaiaaikdacaWGXbGaeyypa0JaaGOnaaqaaiaadghacqGH9a qpdaWcaaqaaiaaiAdaaeaacaaIYaaaaiabg2da9maaL4babaGaaG4m aaaaaeaacaGGOaGaam4AaiaacMcacaaMe8UaaGOmaiaadghacqGHRa WkcaaI2aGaeyypa0JaaGimaaqaaiaaikdacaWGXbGaeyypa0JaeyOe I0IaaGOnaaqaaiaadghacqGH9aqpdaWcaaqaaiabgkHiTiaaiAdaae aacaaIYaaaaiabg2da9maaL4babaGaeyOeI0IaaG4maaaaaeaacaGG OaGaamiBaiaacMcacaaMe8UaaGOmaiaadghacqGHRaWkcaaI2aGaey ypa0JaaGymaiaaikdaaeaacaaIYaGaamyCaiabg2da9iaaigdacaaI YaGaeyOeI0IaaGOnaaqaaiaaikdacaWGXbGaeyypa0JaaGOnaaqaai aadghacqGH9aqpdaWcaaqaaiaaiAdaaeaacaaIZaaaaiabg2da9maa L4babaGaaGOmaaaaaaaa@1872@

Q.11 Solve the following equations:(a) 2y+52=372 (b) 5t+28=10 (c)a5+3=2(d) q4+7=5 (e) 52x=10 (f) 52x=254(g) 7m+192=13 (h) 6z+10=2 (i) 3l2=23(j) 2b35=3

Ans.

( a )2y+ 5 2 = 37 2 2y= 37 2 5 2 = 375 2 = 32 2 =16 2y=16 y= 16 2 =8 Thus, y=8 ( b ) 5t+28=10 5t=1028 5t=18 t= 18 5 ( c ) a 5 +3=2 a 5 =23 a 5 =1 a=5 ( d ) q 4 +7=5 q 4 =57 q 4 =2 q=8 ( e ) 5 2 x=10 5x=10×2 x= 10×2 5 = 5 ×2×2 5 =4 Thus, x=4 ( f ) 5 2 x= 25 4 5x= 25×2 4 x= 5 ×5× 2 2 ×2× 5 Thus, x= 5 2 ( g )7m+ 19 2 =13 7m=13 19 2 = 2619 2 = 7 2 7m= 7 2 m= 7 2× 7 Thus, m= 1 2 ( h ) 6z+10=2 6z=210 6z=12 z= 12 6 = 2× 6 6 0 Thus, z=2 ( i ) 3l 2 = 2 3 3l= 4 3 l= 4 9 ( j ) 2b 3 5=3 2b 3 =8 2b=24 b= 24 2 = 2 ×12 2 Thus, b=12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaadaqadaqaaiaabggaaiaawIcacaGLPaaa caqGYaGaamyEaiabgUcaRmaalaaabaGaaGynaaqaaiaaikdaaaGaey ypa0ZaaSaaaeaacaaIZaGaaG4naaqaaiaaikdaaaaabaGaaGOmaiaa dMhacqGH9aqpdaWcaaqaaiaaiodacaaI3aaabaGaaGOmaaaacqGHsi sldaWcaaqaaiaaiwdaaeaacaaIYaaaaiabg2da9maalaaabaGaaG4m aiaaiEdacqGHsislcaaI1aaabaGaaGOmaaaacqGH9aqpdaWcaaqaai aaiodacaaIYaaabaGaaGOmaaaacqGH9aqpcaaIXaGaaGOnaaqaaiaa ikdacaWG5bGaeyypa0JaaGymaiaaiAdaaeaacaWG5bGaeyypa0ZaaS aaaeaacaaIXaGaaGOnaaqaaiaaikdaaaGaeyypa0JaaGioaaqaaiaa dsfacaWGObGaamyDaiaadohacaGGSaGaaGjbVpaaL4babaGaamyEai abg2da9iaaiIdaaaaabaWaaeWaaeaacaqGIbaacaGLOaGaayzkaaGa aeiiaiaabwdacaqG0bGaey4kaSIaaeOmaiaabIdacqGH9aqpcaqGXa GaaGimaaqaaiaaiwdacaWG0bGaeyypa0JaaGymaiaaicdacqGHsisl caaIYaGaaGioaaqaaiaaiwdacaWG0bGaeyypa0JaeyOeI0IaaGymai aaiIdaaeaadaqjEaqaaiaadshacqGH9aqpdaWcaaqaaiabgkHiTiaa igdacaaI4aaabaGaaGynaaaaaaaabaWaaeWaaeaacaqGJbaacaGLOa GaayzkaaWaaSaaaeaacaqGHbaabaGaaGynaaaacqGHRaWkcaaIZaGa eyypa0JaaGOmaaqaamaalaaabaGaamyyaaqaaiaaiwdaaaGaeyypa0 JaaGOmaiabgkHiTiaaiodaaeaadaWcaaqaaiaadggaaeaacaaI1aaa aiabg2da9iabgkHiTiaaigdaaeaadaqjEaqaaiaadggacqGH9aqpcq GHsislcaaI1aaaaaqaamaabmaabaGaaeizaaGaayjkaiaawMcaamaa laaabaGaamyCaaqaaiaaisdaaaGaey4kaSIaaG4naiabg2da9iaaiw daaeaadaWcaaqaaiaadghaaeaacaaI0aaaaiabg2da9iaaiwdacqGH sislcaaI3aaabaWaaSaaaeaacaWGXbaabaGaaGinaaaacqGH9aqpcq GHsislcaaIYaaabaWaauIhaeaacaWGXbGaeyypa0JaeyOeI0IaaGio aaaaaeaadaqadaqaaiaabwgaaiaawIcacaGLPaaadaWcaaqaaiaaiw daaeaacaaIYaaaaiaadIhacqGH9aqpcqGHsislcaaIXaGaaGimaaqa aiaaiwdacaWG4bGaeyypa0JaeyOeI0IaaGymaiaaicdacqGHxdaTca aIYaaabaGaamiEaiabg2da9maalaaabaGaeyOeI0IaaGymaiaaicda cqGHxdaTcaaIYaaabaGaaGynaaaacqGH9aqpdaWcaaqaaiabgkHiTi qaiwdagaGfaiabgEna0kaaikdacqGHxdaTcaaIYaaabaGabGynayaa waaaaiabg2da9iabgkHiTiaaisdaaeaacaWGubGaamiAaiaadwhaca WGZbGaaiilaiaaysW7daqjEaqaaiaadIhacqGH9aqpcqGHsislcaaI 0aaaaaqaamaabmaabaGaaeOzaaGaayjkaiaawMcaamaalaaabaGaaG ynaaqaaiaaikdaaaGaamiEaiabg2da9maalaaabaGaaGOmaiaaiwda aeaacaaI0aaaaaqaaiaaiwdacaWG4bGaeyypa0ZaaSaaaeaacaaIYa GaaGynaiabgEna0kaaikdaaeaacaaI0aaaaaqaaiaadIhacqGH9aqp daWcaaqaaiqaiwdagaGfaiabgEna0kaaiwdacqGHxdaTceaIYaGbay baaeaaceaIYaGbaybacqGHxdaTcaaIYaGaey41aqRabGynayaawaaa aaqaaiaadsfacaWGObGaamyDaiaadohacaGGSaGaaGjbVpaaL4baba GaamiEaiabg2da9maalaaabaGaaGynaaqaaiaaikdaaaaaaaqaamaa bmaabaGaae4zaaGaayjkaiaawMcaaiaaiEdacaWGTbGaey4kaSYaaS aaaeaacaaIXaGaaGyoaaqaaiaaikdaaaGaeyypa0JaaGymaiaaioda aeaacaaI3aGaamyBaiabg2da9iaaigdacaaIZaGaeyOeI0YaaSaaae aacaaIXaGaaGyoaaqaaiaaikdaaaGaeyypa0ZaaSaaaeaacaaIYaGa aGOnaiabgkHiTiaaigdacaaI5aaabaGaaGOmaaaacqGH9aqpdaWcaa qaaiaaiEdaaeaacaaIYaaaaaqaaiaaiEdacaWGTbGaeyypa0ZaaSaa aeaacaaI3aaabaGaaGOmaaaaaeaacaWGTbGaeyypa0ZaaSaaaeaace aI3aGbaybaaeaacaaIYaGaey41aqRabG4nayaawaaaaaqaaiaadsfa caWGObGaamyDaiaadohacaGGSaGaaGjbVpaaL4babaGaamyBaiabg2 da9maalaaabaGaaGymaaqaaiaaikdaaaaaaaqaamaabmaabaGaaeiA aaGaayjkaiaawMcaaiaabccacaqG2aGaaeOEaiabgUcaRiaabgdaca aIWaGaeyypa0JaeyOeI0IaaeOmaaqaaiaaiAdacaWG6bGaeyypa0Ja eyOeI0IaaGOmaiabgkHiTiaaigdacaaIWaaabaGaaGOnaiaadQhacq GH9aqpcqGHsislcaaIXaGaaGOmaaqaaiaadQhacqGH9aqpdaWcaaqa aiabgkHiTiaaigdacaaIYaaabaGaaGOnaaaacqGH9aqpdaWcaaqaai abgkHiTiaaikdacqGHxdaTceaI2aGbaybaaeaaceaI2aGbaybaaaGa aGimaaqaaiaadsfacaWGObGaamyDaiaadohacaGGSaGaaGjbVpaaL4 babaGaamOEaiabg2da9iabgkHiTiaaikdaaaaabaWaaeWaaeaacaqG PbaacaGLOaGaayzkaaWaaSaaaeaacaaIZaGaamiBaaqaaiaaikdaaa Gaeyypa0ZaaSaaaeaacaaIYaaabaGaaG4maaaaaeaacaaIZaGaamiB aiabg2da9maalaaabaGaaGinaaqaaiaaiodaaaaabaWaauIhaeaaca WGSbGaeyypa0ZaaSaaaeaacaaI0aaabaGaaGyoaaaaaaaabaWaaeWa aeaacaqGQbaacaGLOaGaayzkaaWaaSaaaeaacaaIYaGaamOyaaqaai aaiodaaaGaeyOeI0IaaGynaiabg2da9iaaiodaaeaadaWcaaqaaiaa ikdacaWGIbaabaGaaG4maaaacqGH9aqpcaaI4aaabaGaaGOmaiaadk gacqGH9aqpcaaIYaGaaGinaaqaaiaadkgacqGH9aqpdaWcaaqaaiaa ikdacaaI0aaabaGaaGOmaaaacqGH9aqpdaWcaaqaaiqaikdagaGfai abgEna0kaaigdacaaIYaaabaGabGOmayaawaaaaaqaaiaadsfacaWG ObGaamyDaiaadohacaGGSaGaaGjbVpaaL4babaGaamOyaiabg2da9i aaigdacaaIYaaaaaaaaa@981B@

Q.12 Solve the following equations:(a) 2(x+4)=12 (b) 3(n5)=21 (c) 3(n5)=21(d) 32(2y)=7 (e)4(2x)=9 (f) 4(2x)=9(g) 4+5(p1)=34 (h)345(p1)=4

Ans.

(a) 2(x+ 4)=12 Divide both sides by 2 to get x+4=6 Thus, x=2 ( b ) 3(n5)=21 Divide both sides by 3 to get n5=7 Thus, n=2 ( c ) 3(n5)=21 Divide both sides by 2 to get n5=7 Thus, n=12 ( d ) 32(2y)=7 2( 2y )=4 Divide both sides by2 to get 2y=2 Multiply both sides by1 to get y2=2 Thus, y=4 ( e ) 4(2x)=9 Divide both sides by4 to get 2x= 9 4 Multiply both sides by1 to get x2= 9 4 x= 9 4 +2= 9+8 4 Thus, x= 17 4 ( f ) 4(2x)=9 Divide both sides by 4 to get 2x= 9 4 Multiply both sides by -1 to get x2= 9 4 x= 9 4 +2= 9+8 4 Thus, x= 1 4 ( g ) 4+5 (p1)=34 5( p1 )=30 Divide both sides by 5 to get p1=6 p=6+1=7 Thus, p=7 ( h ) 345(p1)=4 5( p1 )=30 Divide both sides by5 to get p1=6 p=6+1=7 Thus, p=7 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGOaGaaeyyaiaacMcacaqGGaGaaGOm aiaacIcacaWG4bGaey4kaSIaaeiiaiaaisdacaGGPaGaeyypa0JaaG ymaiaaikdaaeaacaqGebGaaeyAaiaabAhacaqGPbGaaeizaiaabwga caqGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAai aabsgacaqGLbGaae4CaiaabccacaqGIbGaaeyEaiaabccacaqGYaGa aeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaadI hacqGHRaWkcaaI0aGaeyypa0JaaGOnaaqaaiaabsfacaqGObGaaeyD aiaabohacaqGSaGaaGjbVpaaL4babaGaamiEaiabg2da9iaaikdaaa aabaWaaeWaaeaacaqGIbaacaGLOaGaayzkaaGaaeiiaiaaiodacaGG OaGaamOBaiabgkHiTiaaiwdacaGGPaGaeyypa0JaeyOeI0IaaGOmai aaigdaaeaacaqGebGaaeyAaiaabAhacaqGPbGaaeizaiaabwgacaqG GaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAaiaabs gacaqGLbGaae4CaiaabccacaqGIbGaaeyEaiaabccacaqGZaGaaeii aiaabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaad6gacq GHsislcaaI1aGaeyypa0JaeyOeI0Iaae4naaqaaiaabsfacaqGObGa aeyDaiaabohacaqGSaWaauIhaeaacaqGGaGaamOBaiabg2da9iabgk HiTiaaikdaaaaabaWaaeWaaeaacaqGJbaacaGLOaGaayzkaaGaaeii aiaaiodacaGGOaGaamOBaiabgkHiTiaaiwdacaGGPaGaeyypa0Jaey OeI0IaaeOmaiaabgdaaeaacaqGebGaaeyAaiaabAhacaqGPbGaaeiz aiaabwgacaqGGaGaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZb GaaeyAaiaabsgacaqGLbGaae4CaiaabccacaqGIbGaaeyEaiaabcca caqGYaGaaeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaa qaaiaad6gacqGHsislcaaI1aGaeyypa0JaeyOeI0IaaG4naaqaaiaa dsfacaWGObGaamyDaiaadohacaGGSaGaaGjbVpaaL4babaGaamOBai abg2da9iabgkHiTiaaigdacaaIYaaaaaqaamaabmaabaGaaeizaaGa ayjkaiaawMcaaiaabccacaqGZaGaeyOeI0IaaeOmaiaacIcacaqGYa GaeyOeI0IaamyEaiaacMcacqGH9aqpcaqG3aaabaGaeyOeI0IaaGOm amaabmaabaGaaGOmaiabgkHiTiaadMhaaiaawIcacaGLPaaacqGH9a qpcaaI0aaabaGaaeiraiaabMgacaqG2bGaaeyAaiaabsgacaqGLbGa aeiiaiaabkgacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgaca qGKbGaaeyzaiaabohacaqGGaGaaeOyaiaabMhacqGHsislcaqGYaGa aeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaaik dacqGHsislcaWG5bGaeyypa0JaeyOeI0IaaGOmaaqaaiaab2eacaqG 1bGaaeiBaiaabshacaqGPbGaaeiCaiaabYgacaqG5bGaaeiiaiaabk gacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKbGaaeyz aiaabohacaqGGaGaaeOyaiaabMhacqGHsislcaqGXaGaaeiiaiaabs hacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaadMhacqGHsisl caaIYaGaeyypa0JaaGOmaaqaaiaabsfacaqGObGaaeyDaiaabohaca qGSaGaaeiiamaaL4babaGaamyEaiabg2da9iaaisdaaaaabaWaaeWa aeaacaqGLbaacaGLOaGaayzkaaGaaeiiaiabgkHiTiaaisdacaGGOa GaaGOmaiabgkHiTiaadIhacaGGPaGaeyypa0Jaaeyoaaqaaiaabsea caqGPbGaaeODaiaabMgacaqGKbGaaeyzaiaabccacaqGIbGaae4Bai aabshacaqGObGaaeiiaiaabohacaqGPbGaaeizaiaabwgacaqGZbGa aeiiaiaabkgacaqG5bGaeyOeI0IaaeinaiaabccacaqG0bGaae4Bai aabccacaqGNbGaaeyzaiaabshaaeaacaqGYaGaeyOeI0IaamiEaiab g2da9maalaaabaGaeyOeI0IaaGyoaaqaaiaaisdaaaaabaGaaeytai aabwhacaqGSbGaaeiDaiaabMgacaqGWbGaaeiBaiaabMhacaqGGaGa aeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAaiaabsgaca qGLbGaae4CaiaabccacaqGIbGaaeyEaiabgkHiTiaabgdacaqGGaGa aeiDaiaab+gacaqGGaGaae4zaiaabwgacaqG0baabaGaamiEaiabgk HiTiaaikdacqGH9aqpdaWcaaqaaiaaiMdaaeaacaaI0aaaaaqaaiaa dIhacqGH9aqpdaWcaaqaaiaaiMdaaeaacaaI0aaaaiabgUcaRiaaik dacqGH9aqpdaWcaaqaaiaaiMdacqGHRaWkcaaI4aaabaGaaGinaaaa aeaacaWGubGaamiAaiaadwhacaWGZbGaaiilaiaaysW7daqjEaqaai aadIhacqGH9aqpdaWcaaqaaiaaigdacaaI3aaabaGaaGinaaaaaaaa baWaaeWaaeaacaqGMbaacaGLOaGaayzkaaGaaeiiaiaaisdacaGGOa GaaGOmaiabgkHiTiaadIhacaGGPaGaeyypa0Jaaeyoaaqaaiaabsea caqGPbGaaeODaiaabMgacaqGKbGaaeyzaiaabccacaqGIbGaae4Bai aabshacaqGObGaaeiiaiaabohacaqGPbGaaeizaiaabwgacaqGZbGa aeiiaiaabkgacaqG5bGaaeiiaiaabsdacaqGGaGaaeiDaiaab+gaca qGGaGaae4zaiaabwgacaqG0baabaGaaeOmaiabgkHiTiaadIhacqGH 9aqpdaWcaaqaaiaaiMdaaeaacaaI0aaaaaqaaiaab2eacaqG1bGaae iBaiaabshacaqGPbGaaeiCaiaabYgacaqG5bGaaeiiaiaabkgacaqG VbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabo hacaqGGaGaaeOyaiaabMhacaqGGaGaaeylaiaabgdacaqGGaGaaeiD aiaab+gacaqGGaGaae4zaiaabwgacaqG0baabaGaaeiEaiabgkHiTi aaikdacqGH9aqpdaWcaaqaaiabgkHiTiaaiMdaaeaacaaI0aaaaaqa aiaadIhacqGH9aqpdaWcaaqaaiabgkHiTiaaiMdaaeaacaaI0aaaai abgUcaRiaaikdacqGH9aqpdaWcaaqaaiabgkHiTiaaiMdacqGHRaWk caaI4aaabaGaaGinaaaaaeaacaqGubGaaeiAaiaabwhacaqGZbGaai ilaiaaysW7daqjEaqaaiaadIhacqGH9aqpdaWcaaqaaiabgkHiTiaa igdaaeaacaaI0aaaaaaaaeaadaqadaqaaiaabEgaaiaawIcacaGLPa aacaqGGaGaaGinaiabgUcaRiaaiwdacaqGGaGaaiikaiaadchacqGH sislcaaIXaGaaiykaiabg2da9iaaiodacaaI0aaabaGaaGynamaabm aabaGaamiCaiabgkHiTiaaigdaaiaawIcacaGLPaaacqGH9aqpcaaI ZaGaaGimaaqaaiaabseacaqGPbGaaeODaiaabMgacaqGKbGaaeyzai aabccacaqGIbGaae4BaiaabshacaqGObGaaeiiaiaabohacaqGPbGa aeizaiaabwgacaqGZbGaaeiiaiaabkgacaqG5bGaaeiiaiaabwdaca qGGaGaaeiDaiaab+gacaqGGaGaae4zaiaabwgacaqG0baabaGaaeiC aiabgkHiTiaaigdacqGH9aqpcaaI2aaabaGaamiCaiabg2da9iaaiA dacqGHRaWkcaaIXaGaeyypa0JaaG4naaqaaiaabsfacaqGObGaaeyD aiaabohacaGGSaGaaGjbVpaaL4babaGaamiCaiabg2da9iaaiEdaaa aabaWaaeWaaeaacaqGObaacaGLOaGaayzkaaGaaeiiaiaaiodacaaI 0aGaeyOeI0IaaGynaiaacIcacaWGWbGaeyOeI0IaaGymaiaacMcacq GH9aqpcaaI0aaabaGaeyOeI0IaaGynamaabmaabaGaamiCaiabgkHi TiaaigdaaiaawIcacaGLPaaacqGH9aqpcqGHsislcaaIZaGaaGimaa qaaiaabseacaqGPbGaaeODaiaabMgacaqGKbGaaeyzaiaabccacaqG IbGaae4BaiaabshacaqGObGaaeiiaiaabohacaqGPbGaaeizaiaabw gacaqGZbGaaeiiaiaabkgacaqG5bGaeyOeI0IaaeynaiaabccacaqG 0bGaae4BaiaabccacaqGNbGaaeyzaiaabshaaeaacaWGWbGaeyOeI0 IaaGymaiabg2da9iaaiAdaaeaacaWGWbGaeyypa0JaaGOnaiabgUca RiaaigdacqGH9aqpcaaI3aaabaGaaeivaiaabIgacaqG1bGaae4Cai aabYcacaaMe8+aauIhaeaacaWGWbGaeyypa0JaaG4naaaaaaaa@6D42@

Q.13 Solve the following equations.(a) 4=5 (p2) (b)4=5 (p2) (c)16=5(2p)(d) 10=4+3 (t+2) (e) 28=4+3 (t+5)(f) 0=16+4 (m6)

Ans.

( a ) 4=5(p2) Divide both sides by 5 to get 4 5 =p2 p= 4 5 +2= 4+10 5 Thus, p= 14 5 ( b )4=5(p2) Divide both sides by 5 to get 4 5 =p2 p= 4 5 +2= 4+10 5 Thus, p= 6 5 ( c )16=5 (2p) Divide both sides by 5 to get 16 5 =2p Multiply both sides by 1 to get 16 5 =p2 p= 16 5 +2= 16+10 5 Thus, p= 6 5 ( d ) 10=4+3(t+2) 6=3( t+2 ) Divide both sides by 3 to get 2=t+2 Thus, t=0 ( e ) 28=4+3(t+5) 24=3( t+5 ) Divide both sides by 3 to get 8=t+5 Thus, t=3 ( f )0=16+4(m6) 16=4( m6 ) Divide both sides by 4 to get 4=m6 Thus, m=2 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaadaqadaqaaiaabggaaiaawIcacaGLPaaa caqGGaGaaeinaiabg2da9iaabwdacaGGOaGaamiCaiabgkHiTiaabk dacaGGPaaabaGaaeiraiaabMgacaqG2bGaaeyAaiaabsgacaqGLbGa aeiiaiaabkgacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgaca qGKbGaaeyzaiaabohacaqGGaGaaeOyaiaabMhacaqGGaGaaeynaiaa bccacaqG0bGaae4BaiaabccacaqGNbGaaeyzaiaabshaaeaadaWcaa qaaiaaisdaaeaacaaI1aaaaiabg2da9iaadchacqGHsislcaaIYaaa baGaamiCaiabg2da9maalaaabaGaaGinaaqaaiaaiwdaaaGaey4kaS IaaGOmaiabg2da9maalaaabaGaaGinaiabgUcaRiaaigdacaaIWaaa baGaaGynaaaaaeaacaqGubGaaeiAaiaabwhacaqGZbGaaiilaiaays W7daqjEaqaaiaadchacqGH9aqpdaWcaaqaaiaaigdacaaI0aaabaGa aGynaaaaaaaabaWaaeWaaeaacaqGIbaacaGLOaGaayzkaaGaeyOeI0 Iaaeinaiabg2da9iaabwdacaGGOaGaamiCaiabgkHiTiaaikdacaGG PaaabaGaaeiraiaabMgacaqG2bGaaeyAaiaabsgacaqGLbGaaeiiai aabkgacaqGVbGaaeiDaiaabIgacaqGGaGaae4CaiaabMgacaqGKbGa aeyzaiaabohacaqGGaGaaeOyaiaabMhacaqGGaGaaeynaiaabccaca qG0bGaae4BaiaabccacaqGNbGaaeyzaiaabshaaeaadaWcaaqaaiab gkHiTiaaisdaaeaacaaI1aaaaiabg2da9iaadchacqGHsislcaaIYa aabaGaamiCaiabg2da9maalaaabaGaeyOeI0IaaGinaaqaaiaaiwda aaGaey4kaSIaaGOmaiabg2da9maalaaabaGaeyOeI0IaaGinaiabgU caRiaaigdacaaIWaaabaGaaGynaaaaaeaacaqGubGaaeiAaiaabwha caqGZbGaaiilaiaaysW7daqjEaqaaiaadchacqGH9aqpdaWcaaqaai aaiAdaaeaacaaI1aaaaaaaaeaadaqadaqaaiaabogaaiaawIcacaGL PaaacqGHsislcaaIXaGaaGOnaiabg2da9iabgkHiTiaaiwdacaqGGa GaaiikaiaaikdacqGHsislcaWGWbGaaiykaaqaaiaabseacaqGPbGa aeODaiaabMgacaqGKbGaaeyzaiaabccacaqGIbGaae4Baiaabshaca qGObGaaeiiaiaabohacaqGPbGaaeizaiaabwgacaqGZbGaaeiiaiaa bkgacaqG5bGaaeiiaiabgkHiTiaabwdacaqGGaGaaeiDaiaab+gaca qGGaGaae4zaiaabwgacaqG0baabaWaaSaaaeaacaaIXaGaaGOnaaqa aiaaiwdaaaGaeyypa0JaaGOmaiabgkHiTiaadchaaeaacaqGnbGaae yDaiaabYgacaqG0bGaaeyAaiaabchacaqGSbGaaeyEaiaabccacaqG IbGaae4BaiaabshacaqGObGaaeiiaiaabohacaqGPbGaaeizaiaabw gacaqGZbGaaeiiaiaabkgacaqG5bGaaeiiaiabgkHiTiaabgdacaqG GaGaaeiDaiaab+gacaqGGaGaae4zaiaabwgacaqG0baabaWaaSaaae aacqGHsislcaqGXaGaaeOnaaqaaiaaiwdaaaGaeyypa0JaamiCaiab gkHiTiaaikdaaeaacaWGWbGaeyypa0ZaaSaaaeaacqGHsislcaaIXa GaaGOnaaqaaiaaiwdaaaGaey4kaSIaaGOmaiabg2da9maalaaabaGa eyOeI0IaaGymaiaaiAdacqGHRaWkcaaIXaGaaGimaaqaaiaaiwdaaa aabaGaaeivaiaabIgacaqG1bGaae4CaiaacYcacaaMe8+aauIhaeaa caWGWbGaeyypa0ZaaSaaaeaacqGHsislcaaI2aaabaGaaGynaaaaaa aabaWaaeWaaeaacaqGKbaacaGLOaGaayzkaaGaaeiiaiaabgdacaaI WaGaeyypa0JaaeinaiabgUcaRiaabodacaGGOaGaamiDaiabgUcaRi aaikdacaGGPaaabaGaaGOnaiabg2da9iaaiodadaqadaqaaiaadsha cqGHRaWkcaaIYaaacaGLOaGaayzkaaaabaGaaeiraiaabMgacaqG2b GaaeyAaiaabsgacaqGLbGaaeiiaiaabkgacaqGVbGaaeiDaiaabIga caqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabohacaqGGaGaaeOyai aabMhacaqGGaGaae4maiaabccacaqG0bGaae4BaiaabccacaqGNbGa aeyzaiaabshaaeaacaaIYaGaeyypa0JaamiDaiabgUcaRiaaikdaae aacaqGubGaaeiAaiaabwhacaqGZbGaaeilaiaabccadaqjEaqaaiaa dshacqGH9aqpcaaIWaaaaaqaamaabmaabaGaaeyzaaGaayjkaiaawM caaiaabccacaqGYaGaaeioaiabg2da9iaabsdacqGHRaWkcaqGZaGa aiikaiaadshacqGHRaWkcaqG1aGaaiykaaqaaiaaikdacaaI0aGaey ypa0JaaG4mamaabmaabaGaamiDaiabgUcaRiaaiwdaaiaawIcacaGL PaaaaeaacaqGebGaaeyAaiaabAhacaqGPbGaaeizaiaabwgacaqGGa GaaeOyaiaab+gacaqG0bGaaeiAaiaabccacaqGZbGaaeyAaiaabsga caqGLbGaae4CaiaabccacaqGIbGaaeyEaiaabccacaqGZaGaaeiiai aabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaaiIdacqGH 9aqpcaWG0bGaey4kaSIaaGynaaqaaiaabsfacaqGObGaaeyDaiaabo hacaqGSaGaaeiiamaaL4babaGaamiDaiabg2da9iaaiodaaaaabaWa aeWaaeaacaqGMbaacaGLOaGaayzkaaGaaGimaiabg2da9iaabgdaca qG2aGaey4kaSIaaeinaiaacIcacaWGTbGaeyOeI0IaaeOnaiaacMca aeaacqGHsislcaaIXaGaaGOnaiabg2da9iaaisdadaqadaqaaiaad2 gacqGHsislcaaI2aaacaGLOaGaayzkaaaabaGaaeiraiaabMgacaqG 2bGaaeyAaiaabsgacaqGLbGaaeiiaiaabkgacaqGVbGaaeiDaiaabI gacaqGGaGaae4CaiaabMgacaqGKbGaaeyzaiaabohacaqGGaGaaeOy aiaabMhacaqGGaGaaeinaiaabccacaqG0bGaae4BaiaabccacaqGNb GaaeyzaiaabshaaeaacqGHsislcaaI0aGaeyypa0JaamyBaiabgkHi TiaaiAdaaeaacaqGubGaaeiAaiaabwhacaqGZbGaaeilaiaabccada qjEaqaaiaad2gacqGH9aqpcaaIYaaaaaaaaa@C843@

Q.14 (a) Construct 3 equations starting with x=2(b) Construct 3 equations starting with x=2

Ans.

(a) Construct 3 equations starting with x=2(b) Construct 3 equations starting with x=2

Q.15 Set up equations and solve them to find the unknownnumbers in the following case:a Add 4 to eight times a number; you get 60.b One fifth of a number minus 4 gives 3.c If I take three fourths of a number and count up 3 more, I get 21.(d) When I subtracted 11 from twice a number, the resultwas 15.(e) Munna subtracts thrice the number of notebooks he has from 50,he finds the result to be 8.f Ibenhal thinks of a number. If she adds 19 to it and divides the sum by 5, she will get 8.g Anwar thinks of a number. If he takes away 7 from 52 of the number,the result is 112.

Ans.

(a) Let the number be x. 8 times of this number = 8x So, we get 8x+4=60 8x=56 x= 56 8 Thus, x=7 (b) Let the number be x. One-fifth of this number= x 5 So, we get x 5 4=3 x 5 =7 x=35 (c) Let the number be x. Three-fourth of this number= 3x 4 So,weget 3x 4 +3=21 3x 4 =18 3x=72 x= 72 3 Thus, x=24 (d)Let the number be x. So, we have 2x-11=15 2x=26 x= 26 13 =13 Thus, x=13 (e)Let the number be x Thrice the number of books =3x So, we get 503x=8 3x=850=42 Divide both sides by -3 to get x= 42 3 =14 Thus, x=14 (f)Let the number be x. We, have x+19 5 =8 x+19=8×5=40 x=4019=21 Thus, x=21 (g)Let the number be x. So,wehave 5x 2 7=23 5x 2 =23+7=30 5x=30×2=60 x= 60 5 =12 Thus, x=12 MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGOaGaaeyyaiaabMcacaqGGaGaaeit aiaabwgacaqG0bGaaeiiaiaabshacaqGObGaaeyzaiaabccacaqGUb GaaeyDaiaab2gacaqGIbGaaeyzaiaabkhacaqGGaGaaeOyaiaabwga caqGGaGaaeiEaiaab6caaeaacaqG4aGaaeiiaiaabshacaqGPbGaae yBaiaabwgacaqGZbGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqG ObGaaeyAaiaabohacaqGGaGaaeOBaiaabwhacaqGTbGaaeOyaiaabw gacaqGYbGaaeiiaiaab2dacaqGGaGaaeioaiaabIhaaeaacaqGtbGa ae4BaiaabYcacaqGGaGaae4DaiaabwgacaqGGaGaae4zaiaabwgaca qG0baabaGaaGioaiaadIhacqGHRaWkcaaI0aGaeyypa0JaaGOnaiaa bcdaaeaacaaI4aGaamiEaiabg2da9iaabwdacaqG2aaabaGaaeiEai aab2dadaWcaaqaaiaaiwdacaaI2aaabaGaaGioaaaaaeaacaWGubGa amiAaiaadwhacaWGZbGaaiilamaaL4babaGaamiEaiabg2da9iaaiE daaaaabaGaaeikaiaabkgacaqGPaGaaeiiaiaabYeacaqGLbGaaeiD aiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOBaiaabwhacaqGTb GaaeOyaiaabwgacaqGYbGaaeiiaiaabkgacaqGLbGaaeiiaiaadIha caGGUaaabaGaae4taiaab6gacaqGLbGaaeylaiaabAgacaqGPbGaae OzaiaabshacaqGObGaaeiiaiaab+gacaqGMbGaaeiiaiaabshacaqG ObGaaeyAaiaabohacaqGGaGaaeOBaiaabwhacaqGTbGaaeOyaiaabw gacaqGYbGaaeypamaalaaabaGaamiEaaqaaiaaiwdaaaaabaGaae4u aiaab+gacaqGSaGaaeiiaiaabEhacaqGLbGaaeiiaiaabEgacaqGLb GaaeiDaaqaamaalaaabaGaamiEaaqaaiaaiwdaaaGaeyOeI0IaaGin aiabg2da9iaaiodaaeaadaWcaaqaaiaadIhaaeaacaaI1aaaaiabg2 da9iaaiEdaaeaadaqjEaqaaiaadIhacqGH9aqpcaaIZaGaaGynaaaa aeaacaqGOaGaae4yaiaabMcacaqGGaGaaeitaiaabwgacaqG0bGaae iiaiaabshacaqGObGaaeyzaiaabccacaqGUbGaaeyDaiaab2gacaqG IbGaaeyzaiaabkhacaqGGaGaaeOyaiaabwgacaqGGaGaamiEaiaac6 caaeaacaqGubGaaeiAaiaabkhacaqGLbGaaeyzaiaab2cacaqGMbGa ae4BaiaabwhacaqGYbGaaeiDaiaabIgacaqGGaGaae4BaiaabAgaca qGGaGaaeiDaiaabIgacaqGPbGaae4CaiaabccacaqGUbGaaeyDaiaa b2gacaqGIbGaaeyzaiaabkhacqGH9aqpdaWcaaqaaiaaiodacaWG4b aabaGaaGinaaaaaeaacaqGtbGaae4BaiaabYcacaaMe8Uaae4Daiaa bwgacaaMe8Uaae4zaiaabwgacaqG0baabaWaaSaaaeaacaaIZaGaam iEaaqaaiaaisdaaaGaey4kaSIaaG4maiabg2da9iaaikdacaaIXaaa baWaaSaaaeaacaaIZaGaamiEaaqaaiaaisdaaaGaeyypa0JaaGymai aaiIdaaeaacaaIZaGaamiEaiabg2da9iaaiEdacaaIYaaabaGaamiE aiabg2da9maalaaabaGaaG4naiaaikdaaeaacaaIZaaaaaqaaiaads facaWGObGaamyDaiaadohacaGGSaGaaGjbVpaaL4babaGaamiEaiab g2da9iaaikdacaaI0aaaaaqaaiaacIcacaWGKbGaaiykaiaaysW7ca qGmbGaaeyzaiaabshacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaa b6gacaqG1bGaaeyBaiaabkgacaqGLbGaaeOCaiaabccacaqGIbGaae yzaiaabccacaWG4bGaaiOlaaqaaiaabofacaqGVbGaaeilaiaabcca caqG3bGaaeyzaiaabccacaqGObGaaeyyaiaabAhacaqGLbaabaGaae OmaiaabIhacaqGTaGaaeymaiaabgdacaqG9aGaaeymaiaabwdaaeaa caqGYaGaaeiEaiaab2dacaqGYaGaaeOnaaqaaiaabIhacaqG9aWaaS aaaeaacaaIYaGaaGOnaaqaaiaaigdacaaIZaaaaiabg2da9iaaigda caaIZaaabaGaamivaiaadIgacaWG1bGaam4CaiaacYcadaqjEaqaai aadIhacqGH9aqpcaaIXaGaaG4maaaaaeaacaGGOaGaamyzaiaacMca caaMe8UaaeitaiaabwgacaqG0bGaaeiiaiaabshacaqGObGaaeyzai aabccacaqGUbGaaeyDaiaab2gacaqGIbGaaeyzaiaabkhacaqGGaGa aeOyaiaabwgacaqGGaGaamiEaaqaaiaabsfacaqGObGaaeOCaiaabM gacaqGJbGaaeyzaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeOB aiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaeiiaiaab+gacaqGMb GaaeiiaiaabkgacaqGVbGaae4BaiaabUgacaqGZbGaaeiiaiabg2da 9iaabodacaWG4baabaGaae4uaiaab+gacaqGSaGaaeiiaiaabEhaca qGLbGaaeiiaiaabEgacaqGLbGaaeiDaaqaaiaabwdacaqGWaGaeyOe I0IaaG4maiaadIhacqGH9aqpcaqG4aaabaGaeyOeI0IaaG4maiaadI hacqGH9aqpcaaI4aGaeyOeI0IaaGynaiaaicdacqGH9aqpcqGHsisl caaI0aGaaGOmaaqaaiaabseacaqGPbGaaeODaiaabMgacaqGKbGaae yzaiaabccacaqGIbGaae4BaiaabshacaqGObGaaeiiaiaabohacaqG PbGaaeizaiaabwgacaqGZbGaaeiiaiaabkgacaqG5bGaaeiiaiaab2 cacaqGZaGaaeiiaiaabshacaqGVbGaaeiiaiaabEgacaqGLbGaaeiD aaqaaiaabIhacaqG9aWaaSaaaeaacqGHsislcaaI0aGaaGOmaaqaai abgkHiTiaaiodaaaGaeyypa0JaaGymaiaaisdaaeaacaWGubGaamiA aiaadwhacaWGZbGaaiilamaaL4babaGaamiEaiabg2da9iaaigdaca aI0aaaaaqaaiaacIcacaWGMbGaaiykaiaaysW7caqGmbGaaeyzaiaa bshacaqGGaGaaeiDaiaabIgacaqGLbGaaeiiaiaab6gacaqG1bGaae yBaiaabkgacaqGLbGaaeOCaiaabccacaqGIbGaaeyzaiaabccacaWG 4bGaaiOlaaqaaiaabEfacaqGLbGaaeilaiaabccacaqGObGaaeyyai aabAhacaqGLbaabaWaaSaaaeaacaWG4bGaey4kaSIaaGymaiaaiMda aeaacaaI1aaaaiabg2da9iaaiIdaaeaacaWG4bGaey4kaSIaaGymai aaiMdacqGH9aqpcaaI4aGaey41aqRaaGynaiabg2da9iaaisdacaaI WaaabaGaamiEaiabg2da9iaaisdacaaIWaGaeyOeI0IaaGymaiaaiM dacqGH9aqpcaaIYaGaaGymaaqaaiaabsfacaqGObGaaeyDaiaaboha caqGSaGaaGjbVpaaL4babaGaamiEaiabg2da9iaaikdacaaIXaaaaa qaaiaacIcacaWGNbGaaiykaiaaysW7caqGmbGaaeyzaiaabshacaqG GaGaaeiDaiaabIgacaqGLbGaaeiiaiaab6gacaqG1bGaaeyBaiaabk gacaqGLbGaaeOCaiaabccacaqGIbGaaeyzaiaabccacaWG4bGaaiOl aaqaamaaL4babaGaam4uaiaad+gacaGGSaGaaGjbVlaadEhacaWGLb GaaGjbVlaadIgacaWGHbGaamODaiaadwgaaaaabaWaaSaaaeaacaaI 1aGaamiEaaqaaiaaikdaaaGaeyOeI0IaaG4naiabg2da9iaaikdaca aIZaaabaWaaSaaaeaacaaI1aGaamiEaaqaaiaaikdaaaGaeyypa0Ja aGOmaiaaiodacqGHRaWkcaaI3aGaeyypa0JaaG4maiaaicdaaeaaca aI1aGaamiEaiabg2da9iaaiodacaaIWaGaey41aqRaaGOmaiabg2da 9iaaiAdacaaIWaaabaGaamiEaiabg2da9maalaaabaGaaGOnaiaaic daaeaacaaI1aaaaiabg2da9iaaigdacaaIYaaabaGaaeivaiaabIga caqG1bGaae4CaiaacYcacaaMe8+aauIhaeaacaWG4bGaeyypa0JaaG ymaiaaikdaaaaaaaa@4FA1@

Q.16 Solve the following:a The teacher tells the class that the highest marksobtained by a student in her class is twice the lowestmarks plus 7.The highest score is 87. What is thelowest score?b In an isosceles triangle, the base angles are equal.The vertex angle is 40°. What are the base angles of thetriangle? (Remember, the sum of three angles of a triangleis 180°)

Ans.

Solve the following:a The teacher tells the class that the highest marksobtained by a student in her class is twice the lowestmarks plus 7.The highest score is 87. What is thelowest score?b In an isosceles triangle, the base angles are equal.The vertex angle is 40°. What are the base angles of thetriangle? (Remember, the sum of three angles of a triangleis 180°)

Q.17 Solve the following:(i)Irfan says that he has 7 marbles more than five timesthe marbles Parmithas. Irfan has 37 marbles. How manymarbles does Parmit have?(ii)Laxmis father is 49 year sold.He is 4 years older thanthree times Laxmis age.What is Laxmi sage?(iii) Maya, Madhura and Mohsina are friends studying in thesame class.In a class testin geography, Maya got 16out of 25. Madhura got 20. Their average score was 19.How much did Mohsina score?

(iv) People of Sundargram planted a total of 102 trees in the village garden. Some of the trees were fruit trees. The number of nonfruit trees were two more than three times the number of fruit trees. What was the number of fruit trees planted?

Ans.

(i) Let Parmit has m marbles. Then, according to the question, we have 5×Number of marbles Parmit has +7=Number of marbles Irfan has 5×m+7=37 So, we get 5m+7=37 5m=377=30 5m=30 m= 30 5 =6 Therefore,Parmithas 6marbles . (ii) Let Laxmi be y years old Then, according to the question, we have 3×Laxmi’s age+4=Laxmi’s father age 3×y+4=49 3y+4=49 3y=494=45 3y=45 y= 45 3 =15 Therefore,laxmi’sageis 15years . (iii) Let the number of fruit trees be x. So, we have 3× Number of fruit trees+2=Number of non-fruit trees 3x+2=77 3x=772=75 3x=75 x= 75 3 =25 Therefore,thenumberoffruittreeswas 25 . MathType@MTEF@5@5@+= feaagKart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbwvMCKf MBHbqeduuDJXwAKbYu51MyVXgaruWqVvNCPvMCG4uz3bqefqvATv2C G4uz3bIuV1wyUbqeeuuDJXwAKbsr4rNCHbGeaGqiVz0xg9vqqrpepC 0xbbL8F4rqqrFfpeea0xe9Lq=Jc9vqaqpepm0xbba9pwe9Q8fs0=yq aqpepae9pg0FirpepeKkFr0xfr=xfr=xb9adbaqaaeGaciGaaiaabe qaamaaeaqbaaGceaqabeaacaqGOaGaaeyAaiaabMcacaqGGaGaaeit aiaabwgacaqG0bGaaeiiaiaabcfacaqGHbGaaeOCaiaab2gacaqGPb GaaeiDaiaabccacaqGObGaaeyyaiaabohacaqGGaGaamyBaiaabcca caqGTbGaaeyyaiaabkhacaqGIbGaaeiBaiaabwgacaqGZbGaaeOlaa qaaiaabsfacaqGObGaaeyzaiaab6gacaqGSaGaaeiiaiaabggacaqG JbGaae4yaiaab+gacaqGYbGaaeizaiaabMgacaqGUbGaae4zaiaabc cacaqG0bGaae4BaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaaeyC aiaabwhacaqGLbGaae4CaiaabshacaqGPbGaae4Baiaab6gacaqGSa GaaeiiaiaabEhacaqGLbGaaeiiaiaabIgacaqGHbGaaeODaiaabwga aeaacaqG1aGaey41aqRaaeOtaiaabwhacaqGTbGaaeOyaiaabwgaca qGYbGaaeiiaiaab+gacaqGMbGaaeiiaiaab2gacaqGHbGaaeOCaiaa bkgacaqGSbGaaeyzaiaabohacaqGGaGaaeiuaiaabggacaqGYbGaae yBaiaabMgacaqG0bGaaeiiaiaabIgacaqGHbGaae4CaiaabccacaqG RaGaae4naiabg2da9iaab6eacaqG1bGaaeyBaiaabkgacaqGLbGaae OCaiaabccacaqGVbGaaeOzaiaabccacaqGTbGaaeyyaiaabkhacaqG IbGaaeiBaiaabwgacaqGZbaabaGaaCzcaiaaxMaacaWLjaGaaCzcai aaxMaacaWLjaGaaCzcaiaaxMaacaWLjaGaaeysaiaabkhacaqGMbGa aeyyaiaab6gacaqGGaGaaeiAaiaabggacaqGZbaabaGaaCzcaiaaxM aacaWLjaGaaCzcaiaaxMaacaWLjaGaaGjbVlaaysW7caqG1aGaey41 aqRaamyBaiabgUcaRiaabEdacqGH9aqpcaqGZaGaae4naaqaaiaabo facaqGVbGaaeilaiaabccacaqG3bGaaeyzaiaabccacaqGNbGaaeyz aiaabshaaeaacaWLjaGaaCzcaiaaxMaacaWLjaGaaCzcaiaaxMaaca aMe8UaaGjbVlaaysW7caqG1aGaamyBaiabgUcaRiaabEdacqGH9aqp caqGZaGaae4naaqaaiaaiwdacaWGTbGaeyypa0JaaG4maiaaiEdacq GHsislcaaI3aGaeyypa0JaaG4maiaaicdaaeaacaaI1aGaamyBaiab g2da9iaaiodacaaIWaaabaGaamyBaiabg2da9maalaaabaGaaG4mai aaicdaaeaacaaI1aaaaiabg2da9iaaiAdaaeaacaqGubGaaeiAaiaa bwgacaqGYbGaaeyzaiaabAgacaqGVbGaaeOCaiaabwgacaqGSaGaaG zaVlaabcfacaqGHbGaaeOCaiaab2gacaqGPbGaaeiDaiaaysW7caqG ObGaaeyyaiaabohacaaMe8+aauIhaeaacaqG2aGaaGjbVlaab2gaca qGHbGaaeOCaiaabkgacaqGSbGaaeyzaiaabohaaaGaaeOlaaqaaiaa bIcacaqGPbGaaeyAaiaabMcacaqGGaGaaeitaiaabwgacaqG0bGaae iiaiaabYeacaqGHbGaaeiEaiaab2gacaqGPbGaaeiiaiaabkgacaqG LbGaaeiiaiaadMhacaqGGaGaaeyEaiaabwgacaqGHbGaaeOCaiaabo hacaqGGaGaae4BaiaabYgacaqGKbaabaGaaeivaiaabIgacaqGLbGa aeOBaiaabYcacaqGGaGaaeyyaiaabogacaqGJbGaae4Baiaabkhaca qGKbGaaeyAaiaab6gacaqGNbGaaeiiaiaabshacaqGVbGaaeiiaiaa bshacaqGObGaaeyzaiaabccacaqGXbGaaeyDaiaabwgacaqGZbGaae iDaiaabMgacaqGVbGaaeOBaiaabYcacaqGGaGaae4DaiaabwgacaqG GaGaaeiAaiaabggacaqG2bGaaeyzaaqaaiaabodacqGHxdaTcaqGmb GaaeyyaiaabIhacaqGTbGaaeyAaiaabEcacaqGZbGaaeiiaiaabgga caqGNbGaaeyzaiabgUcaRiaabsdacqGH9aqpcaqGmbGaaeyyaiaabI hacaqGTbGaaeyAaiaabEcacaqGZbGaaeiiaiaabAgacaqGHbGaaeiD aiaabIgacaqGLbGaaeOCaiaabccacaqGHbGaae4zaiaabwgaaeaaca qGZaGaey41aqRaamyEaiabgUcaRiaaisdacqGH9aqpcaqG0aGaaeyo aaqaaiaabodacaWG5bGaey4kaSIaaeinaiabg2da9iaabsdacaqG5a aabaGaaG4maiaadMhacqGH9aqpcaaI0aGaaGyoaiabgkHiTiaaisda cqGH9aqpcaaI0aGaaGynaaqaaiaaiodacaWG5bGaeyypa0JaaGinai aaiwdaaeaacaWG5bGaeyypa0ZaaSaaaeaacaaI0aGaaGynaaqaaiaa iodaaaGaeyypa0JaaGymaiaaiwdaaeaacaqGubGaaeiAaiaabwgaca qGYbGaaeyzaiaabAgacaqGVbGaaeOCaiaabwgacaqGSaGaaGjbVlaa bYgacaqGHbGaaeiEaiaab2gacaqGPbGaae4jaiaabohacaaMe8Uaae yyaiaabEgacaqGLbGaaGjbVlaabMgacaqGZbGaaGjbVpaaL4babaGa aeymaiaabwdacaaMe8UaaeyEaiaabwgacaqGHbGaaeOCaiaabohaaa GaaeOlaaqaaiaabIcacaqGPbGaaeyAaiaabMgacaqGPaGaaeiiaiaa bYeacaqGLbGaaeiDaiaabccacaqG0bGaaeiAaiaabwgacaqGGaGaae OBaiaabwhacaqGTbGaaeOyaiaabwgacaqGYbGaaeiiaiaab+gacaqG MbGaaeiiaiaabAgacaqGYbGaaeyDaiaabMgacaqG0bGaaeiiaiaabs hacaqGYbGaaeyzaiaabwgacaqGZbGaaeiiaiaabkgacaqGLbGaaeii aiaadIhacaGGUaaabaGaae4uaiaab+gacaqGSaGaaeiiaiaabEhaca qGLbGaaeiiaiaabIgacaqGHbGaaeODaiaabwgaaeaacaqGZaGaey41 aqRaaeiiaiaab6eacaqG1bGaaeyBaiaabkgacaqGLbGaaeOCaiaabc cacaqGVbGaaeOzaiaabccacaqGMbGaaeOCaiaabwhacaqGPbGaaeiD aiaabccacaqG0bGaaeOCaiaabwgacaqGLbGaae4CaiabgUcaRiaaik dacqGH9aqpcaqGobGaaeyDaiaab2gacaqGIbGaaeyzaiaabkhacaqG GaGaae4BaiaabAgacaqGGaGaaeOBaiaab+gacaqGUbGaaeylaiaabA gacaqGYbGaaeyDaiaabMgacaqG0bGaaeiiaiaabshacaqGYbGaaeyz aiaabwgacaqGZbaabaGaaG4maiaadIhacqGHRaWkcaaIYaGaeyypa0 JaaG4naiaaiEdaaeaacaaIZaGaamiEaiabg2da9iaaiEdacaaI3aGa aiylaiaaikdacqGH9aqpcaaI3aGaaGynaaqaaiaaiodacaWG4bGaey ypa0JaaG4naiaaiwdaaeaacaWG4bGaeyypa0ZaaSaaaeaacaaI3aGa aGynaaqaaiaaiodaaaGaeyypa0JaaGOmaiaaiwdaaeaacaqGubGaae iAaiaabwgacaqGYbGaaeyzaiaabAgacaqGVbGaaeOCaiaabwgacaqG SaGaaGjbVlaabshacaqGObGaaeyzaiaaysW7caqGUbGaaeyDaiaab2 gacaqGIbGaaeyzaiaabkhacaaMe8Uaae4BaiaabAgacaaMe8UaaeOz aiaabkhacaqG1bGaaeyAaiaabshacaaMe8UaaeiDaiaabkhacaqGLb GaaeyzaiaabohacaaMe8Uaae4DaiaabggacaqGZbGaaGjbVpaaL4ba baGaaGOmaiaaiwdaaaGaaiOlaaaaaa@4A61@

Q.18 Solve the following riddle.I am a number,Tell my identity!Take me seven times overAnd add a fifty!To reach a triple centuryYou still need forty

Ans.

Let the number be x.Then we have(7x+50)+40=3007x+50+40=3007x+90+3007x=300907x=210x=2107=30.Therefore, the number is 30.

For viewing question paper please click here

FAQs (Frequently Asked Questions)
1. What are the important topics covered in NCERT Solutions Class 7 Mathematics Chapter 4?

A few of the important topics covered under Chapter 7 are given below:

  • Constants and variables 
  • L.H.S and R.H.S
  • Equations

2. How do you avail the study materials for NCERT Solutions for Class 7 Mathematics?

NCERT Solutions for Class 7 Mathematics are available on Extramarks. Subject matter experts have crafted the solutions in a step-by-step method that is easy to understand. Students can revise and solve the questions to master this chapter.

3. Are there any theoretical questions in chapter Simple Equations of Class 7 Mathematics?

There aren’t any theoretical questions in this chapter. The questions in this chapter are mostly practical. Even if a theoretical question is asked, the response will be one line or one word long. As a result, your primary focus should be on problem solving rather than learning theory.

4. How many questions are there in NCERT Solutions for class 11 chapter 4?

There are a variety of questions found in NCERT solutions for Class 11 Chapter 4. The chapter is divided into four exercises. Exercise 4.1 has a total of 6 questions, exercise 4.2 has 4 questions, exercise 4.3 has four questions and exercise 4.4 has four questions.